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We consider a problem of advection and diffusion of passive scalar and vector fields
in a particular family of steady fluid flows. These flows are obtained by adding a small
uniform velocity to a spatially periodic array of spiral eddies. The uniform flow, &y,
is taken to have the discrete form

= (M, N,0)/(M>+ N%)i, e<1

where M, N are relatively prime integers. The spatially periodic part, u’, may be
expressed in terms of a streamfunction ¥,

= (Y’ /0y, — Oy’ ox, Ky'), ¥ = sinxsiny,

where K is a constant. The flow we study is therefore u = @ +u'.

Our work is motivated by applications of dynamo theory and to classical diffusion
of passive scalars. The above family of flows was chosen as typical of spatially periodic
flow with non-zero mean velocity, @#y. The flows are comparatively simple because
they are independent of z. Nevertheless the projection of the streamline pattern onto
the plane z = 0 can be surprisingly complex, owing to the structure of # modulo the
cell of periodicity of u’.

This structure accounts for our special form of #,; above, which makes the tangent
of the angle of inclination of the uniform current a rational number. This uniform
component breaks up the eddy pattern into closed eddies whose bounding streamlines
begin and end at X-type stagnation points. The set of all such streamlines define the
boundaries of the open channels, which fill the regions between the closed eddies and
lie near the separatrices of w’. Then, for example, when L = M+ N is even the
channel structure repeats under a shift (Mmn, Nx) in the xy plane, leading to a
periodicity in channel length of order L. Analogous results apply to the case L odd.
This geometry raises interesting questions regarding the advection and diffusion of
fields in the irrational limit, i.e. when M, N 0o, M/ N - irrational. A basic result of
this paper will be formal asymptotic expressions, for average physical quantities of
interest, in the irrational limit.

An asymptotic theory of advection—diffusion is exploited, based upon a separation
into closed eddies, channels, and separatrix boundary layers. The fundamental
assumption is that the dimensionless parameter R (a magnetic Reynolds number in
the dynamo problem, a Péclet number in diffusion problems) is large, meaning that
transport by molecular diffusion is nominally small compared with transport by
advection. For large R, the X-type stagnation points trigger boundary layers, which
for given M, N extend a distance of order L before repeating the structure. This leads
to channel boundary layers of width L:R , compared with eddy boundary layer of
width R* and channel widths of order €L~ 1 , the eddies being separated by gaps of
widths order €. In this setting the irrational limit is taken after the above asymptotic
structure is isolated by the limit R — 0.

Our results consist of numerical studies for f = eR? of order unity, and analytic
asymptotlc expressmns derived under the condition £ > L}, In the former, the eddy
separation width is comparable with the eddy boundary layer width, so that we study
the transition from transport dominated by boundary layers to transport dominated
by channels. In the asymptotic theory for large S, the boundary-layer contributions
may be neglected and the problem reduces to the analysis of channel geometry.
Even here, the condition /3 I} restricts us to a countable set of mean flow
orientations. The relation between solutions for these special orientations, and their
immediate neighbours with irrational tangents, is discussed. Representative results
for effective diffusion of a passive scalar field, and for mean induced electromotive
force in an electrically conducting fluid (the a-effect) are presented. We also discuss
the present examples in relation to the more complex problem of advection—diffusion
by flows with chaotic lagrangian paths.
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1. INTRODUCTION

The analysis presented in the present paper is motivated primarily by the theory of kinematic
dynamo action by the movement of an electrically conducting fluid in the presence of an
electromagnetic field (see, for example, Moffatt 1978). That theory has been extensively
developed for the case where magnetic diffusion plays a dominant role, in the sense that the
magnetic Reynolds number (R = velocity X length/magnetic diffusivity) is very small for the
eddies of the flow. In such a limit the induced magnetic field may be assumed to be dominated
by a component that varies on the large length scale, that is, a scale large compared with the
size of the eddies of the flow. The details of the structure of the flow field are thus largely
bypassed by the theory, or rather are evaluated only through averages over the smaller scale
components of the fields. In this way an average electromotive force, the a-effect, can be
calculated.

When, on the other hand, the magnetic Reynolds number is large, so that advection
dominates diffusion, the situation is very different and the flow structure must be considered
in detail. The large-R theory is characterized by the presence of magnetic boundary layers, of
thickness O(R™?), which thread through space and separate regions of relatively low molecular
diffusion. Typically this structure is created by a process of flux expulsion, leading to magnetic
voids and flux concentration into sheets and ropes (Weiss 1966 ; Galloway ¢t al. 1978). In spite
of this change in magnetic structure, the magnitude of the resulting concentration of flux is still
controlled by the size of the average magnetic field threading the flow, so that for certain
calculations mean-field or averaging methods can again be used. For simple steady flows, the
magnitude of the resulting a-effect was first considered by Childress (1979) (hereafter referred
to as paper 1).

When restricted to steady kinematic dynamo theory, the nature of the large-R theory is
determined by the complexity of the streamline pattern of the flow. In spatially periodic
systems, investigations have focused on the ABC family of helical flows,

u= (4dsinz+Ccosy, Bsinx+ A cos z, Csiny+ B cos x) (1.1)

in which 4, B, C are constants. These are Beltrami flows, with V x 4 = u. They have maximal
mean helicity for given mean kinetic energy, this being an important ingredient in many
examples of dynamo action (Moffatt 1978). The case 4 = B, C = 0 was studied in detail by
Roberts (1972). His numerical method used a modal expansion, which took advantage of the
simple form of the flow velocity (1.1). The large-R properties of this special case were later
discussed as the two-dimensional case of paper 1. The case 4 # B, C = 0 has been treated in
the dynamo context by Childress & Soward (1989) (hereafter referred to as paper 2). The
geometry of the streamlines of (1.1) in the general case was discussed first by Hénon (1966) and
more recently by Dombre ¢t al. (1986).

These studies have illustrated the way in which boundary layers can be set up for various
streamline configurations. When C = 0 the flow (1.1) is invariant in z and the projection of
streamlines onto the xy plane yields a pattern of closed eddies separated (if 4 # B) by channels
carrying net fluid flux. When also C # 0, however, the flow exhibits regions of lagrangian
chaos. Then, if streamlines are plotted modulo 27 in x, y, z, a single line can be dense in a three-
dimensional region, and it is difficult to introduce a consistent boundary-layer limit.

46-2
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652 A.M.SOWARD AND S. CHILDRESS

The present work is devoted to a variant of (1.1), which falls between the single integrable
cases and those exhibiting lagrangian chaos. We first introduce the velocity field

u=ug+u(xy), (1.2a)
where u = 0y’ /0y, —0y’/Ox, Kyf') (Y = sinxsiny+dcosxcosy), (1.20)
Uy = €(sin (Iz), cos (12),0), (1.2¢)

and K, ¢, § and [ are constants. Here we refer to the xy plane as the horizontal and the z-axis
as the vertical. In the special case K = = 2t the motion (1.2) reduces to the Beltrami flow
(1.1). The correspondence is made by a rotation of 45° about the vertical z-axis, a horizontal
translation and a reduction of the length scale by a factor 273, The case € = & = 0 was the two-
dimensional case of paper 1, while € = 0,8 # 0 was the subject of paper 2. The present study
is concerned with the limit

0=0, ¢#0, [<K1, [z—>0,= const. (1.24)

The principle new feature of the flow is thus the existence of a non-zero mean velocity
e(sin 6, cos 6, 0). Our goal is to assess the influence of this mean motion on the boundary-layer
structure, and thence on the transport of scalar field and the resulting a-effect. We are
particularly interested in the role that mean motion might play in the construction of fast
dynamos. Fast dynamos have the property that the growth rate p(R) associated with dynamo
action at given R, has a positive supremum limit for large R. Thus fast dynamo action should
reflect the geometry of streamlines and their effect on the stretching and folding of field, apart
from the molecular diffusion that accompanies these distortions.

For the special case of two-dimensional flows (1.2) with Iz replaced by 6,, magnetic modes
can be sought in the form

B(x,1) = Re [e""B(x,)], (1.30)

of given vertical wavenumber ¢. The horizontal average of the induction equation yields in
dimensionless units the identity

(p+R7'¢*) (B,, B,) = iKq(—E,, E,), (1.3)

where By, and KEj are the horizontal averages B and (u x B)y respectively. This means that
the horizontal mean electromotive force is related linearly to the mean magnetic field in the
form

KE,=a-B,, (1.3¢)

where « is a 2 x 2 matrix. Because this & depends on the nature of the mean field through its
dependence on the wavenumber and ultimately the complete solution, we refer to it as a
generalized a-effect. The classical a-effect of mean field theory corresponds to the limiting
value of the a-matrix in the long wavelength limit ¢—0, and can be derived directly
independent of the mean field equation (1.36).

The nature of our new dynamo with mean motion should be contrasted with the previous
models. In the Roberts case & = ¢ = 0 the horizontal motion is confined to closed eddies, which
fill the squares

I, , = |mn,(m+1)n] x [ax, (n+1) 7], (1.4)
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where m and n are integers. The circulation in neighbouring eddies is opposite in sign, while
the local helicity #-V x u has the same sign. The magnetic boundary layers which result are
confined to the boundaries of these eddies, that is the lines x = mn and y = nm. In paper 1 the
mean electromotive force generated by a non-zero mean magnetic field in the absence of any
z-variations was evaluated and shown to be concentrated in boundary layers. From this
particularly symmetric flow the 2 x 2 a-matrix is isotropic:

—a=al (K 'Ra—o,as R— o). (1.5)

The value of the constant a, appropriate to the limit ¢— 0 has been determined numerically
by Anufriyev & Fishman (1982), Perkins & Zweibel (1987), Rosenbluth et al. (1987) and
analytically by Soward (1987). According to the result (1.5) above of paper 1, the growth rate
of a mode with small but fixed wavenumber ¢ is proportional to R™%. Galloway & Frisch (1986)
calculated the growth rate at large magnetic Reynolds number numerically using, like Roberts
before, full modal expansions. At the values of R considered, their results do not follow the
RE-power law. Instead they agree with a modified asymptotic theory (Soward 1989) valid
for intermediate values of R, which takes into account the dependence of a on both ¢ and R.

The results of Soward (1987, 1989) depend very much on the fact that the vertical z-
variation of the mean magnetic field can be as small as the boundary layer thickness of order
R%. This freedom allows growth rates larger than R7%, but does not produce a fast dynamo for
the flow considered here. This calculation realizes the field structure predicted by Moffatt &
Proctor (1985), who regard from a general point of view that steady flows, which produce fast
dynamos, would tend to produce magnetic fields with length scale of order R# essentially filling
the excitation volume. The inclusion of the z-dependence of the mean field, while essential for
a comprehensive study of possible fast dynamo activity, is, however, secondary for the analysis
of the overall geometry of boundary layers and for reasonable estimates of a-effect. For this
reason we shall ignore the vertical structure of the mean magnetic field in the present work.
Our analysis will thus be more in the spirit of papers 1 and 2 than of Soward (1987), although
the streamline geometry is far more complex with the addition of a mean motion.

Our analysis will build on the ideas developed in paper 2, where the case e =0, 0<d§ < 1
of (1.2) was investigated in detail. As in the Roberts (1972) study with ¢ = 0, motion is still
z-independent and lies on stream surfaces, " = const. Most of the motion remains in closed
eddies. They form rows of cat’s-eyes inclined at 45° with the x-axis and connected at their
vertices which are located at diagonally opposite corners of the squares IT,, ,. The regions
between each row form open channels, in which horizontal motion flows systematically in one
direction but reverses in sign from one channel to the next. Just as in the Roberts case magnetic
flux is expelled from the cat’s-eyes and is concentrated at their boundaries and within the
channel regions between them. When the channel width & greatly exceeds the boundary layer
width R™%, the boundary layers triggered at the cat’s-eye vertices (X-type stagnation points of
the horizontal motion) are confined to the immediate vicinity of the separatrices connecting
them. Elsewhere in the interior of the channels magnetic field is almost aligned to the flow.

As far as the dynamo mechanisms are concerned two particular orientations of the mean
magnetic field By, are significant. First, when By is aligned parallel to the rows of cat’s-eyes in
the direction i* = (1, 1), the resulting horizontal magnetic field simply aligns itself with the
channel flow and there is very little inductive effect. Secondly, when By lies perpendicular to
the rows of cat’s-eyes, in the direction i~ = (1, —1), magnetic flux is stretched out and
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intensified by an order of magnitude R in the channels so giving a strong inductive effect.
Together the results for parallel and perpendicular magnetic fields show that the a-matrix in
(1.3¢) has the symmetric form

—K'a =t (i) + 3o (0. (1.6)
The results of paper 2 show that the two eigenvalues Ka* and Ka~ of the a-matrix, linked to
the case of parallel and perpendicular fields respectively, have magnitudes

Ko* = O(KR#67%), Ka = O(KR®) (RP<8<1), (1.7a)

when the boundary layer width R#is small compared with the channel width 6. It is, however,
the square root of the determinant of « that determines the growth rate

b~ (deta)i = K(ata")F = O(KRH(RW)?). (1.7b)

Comparison of this result with (1.5) shows that increasing the scaled channel width R
improves the inductive effect for modes of given vertical length scale. There is, however, no
suggestion that this dynamo will give significantly faster maximum growth rates because a
lower limit on the vertical length scale is imposed by the channel, and this limit increases with
0. Corresponding results for scalar diffusion were also obtained in paper 2 and recently related
results have been reported by Crisanti e al. (1990).

In both the Roberts (1972) case and in the extension considered in paper 2, motion is two
dimensional and confined to streamsurfaces. Most of the dynamo results reported for the fully
three-dimensional Beltrami flow (1.1) with 4, B, C non-zero are numerical. In addition to the
early resuts of Roberts (1972) for two-dimensional flows, we mention particularly Arnold &
Korkina (1983) and Galloway & Frisch (1984, 1986). It is clear from the last of these studies
(Galloway & Frisch 1986) that very rapid growth rates can be obtained when the magnetic
Reynolds number R is large. Whether or not they are fast dynamos is not clear. Nevertheless,
the physical mechanisms that occur appear to be compatible with the asymptotic theory
proposed in paper 1. Thus it was argued that, in the case 4 = B = C = 1, magnetic flux ropes
would form on certain streamlines connecting stagnation points in which field lines would be
twisted about them by the local swirling motion. When the flow in the rope diverges at the
stagnation points onto two-dimensional manifolds, loops of flux expand by an order of
magnitude and provide an order one a-effect. The main obstacle of the theory, discussed in
Childress & Soward (19835), concerns the flow and magnetic induction on the two-dimensional
manifold. It lies in the chaotic regions of the flow and has an extremely complex structure. Here
we may reasonably suppose that as R — oo structures of the flow on ever smaller length scales
will continue to emerge and significantly alter the fine-scale structure of the magnetic field
induced on R length scales. A complete asymptotic theory of such regions remains a daunting
task yet to be undertaken. Be that as it may, these chaotic regions have long been regarded as
likely sites of dynamo activity (see, for example Zeldovich e al. 1983, 1984 and more recently
Vishik 1988, 1989) because, according to frozen field theory, the local straining motion
stretches magnetic field lines at an exponential rate.

A promising approach to analysis of dynamo action within the chaotic regions might be
based upon (1.2) in the Beltrami case K = = 2t mentioned above, and 8 = 0 but with e small
and positive. The lagrangian orbits of this flow and other steady motions in two and three
dimensions were discussed by Zaslavskii et al. (1988) and Chernikov et al. (1990), who noted
that chaos in (1.2) is confined to a ‘web’ determined by the separatrices of the cells. That is,
to regions where boundary layers arise where diffusion is active.
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As we have indicated above, the present analysis makes no attempt to deal with the three-
dimensional aspects of the flows (1.2) and will instead focus on the special case

0=0, 0<e<1 (1.8)
with uniform mean horizontal flow in the form
Uy = €elly, Uy = (sinf,cosb,). (1.9)

The complete horizontal motion, uy = &+ uy has some interesting features. Motion is largely
confined to closed eddies on each of the squares IT,, ,. The streamline bounding each eddy
begins and ends at the same X-type stagnation point (a homoclinic orbit). The continuation
of that streamline only returns to a similar stagnation point when

tanfy = M/N (1.104)
is rational (see §2.2 below). In fact, if M and N are relatively prime non-negative integers with
L=M+N, (1.106)

the xy-shift from one stagnation point to the next is (M, Nrt) for even L and (2Mmn, 2Nn) for
odd L (see (2.14) and (2.16) below). The point here is that a complicated streamline structure
emerges which is periodic on a length scale of order L. So when tanf, is irrational, the
streamline pattern never repeats itself, thus mimicing an important feature of three-
dimensional flows containing regions of lagrangian chaos. There and in the present irrational
limit, the induced magnetic field responds indefinitely to finer and finer streamline structures
as R— oo.

The underlying goal of the present paper is thus to bridge the gap between the earlier
boundary-layer theories, for which a finite number of distinct boundary layers emerge as
R— 00, and the case of chaotic flows, for which the number of distinct boundary layers need not
be finite or even countable. With the simplification (1.9) we shall find that the streamlines of
maximum complexity are ‘almost periodic’, in that the streamlines of #;; can be dense in the
plane. We shall find that in these cases finer and finer boundary-layer structure emerges as R
increases to infinity.

The paper is organized as follows. In §2 the channel structure, whose boundaries are
composed of all the streamlines through X-type stagnation points, is described in detail. An
alternative approach, which emphasises different aspects, is developed in Appendix A using
shift maps. In §3 the advection—diffusion problems discussed previously in paper 2 are outlined
and modified as they relate to our new flow. As in paper 2 the study of the heat conduction
equation (the thermal problem) is looked on as an introductory example from which we obtain
an understanding of the key ideas underlying the solutions of the magnetic induction equation
(the magnetic problem). In §4 numerical solutions of the boundary layer equations are given,
which occur when the eddy boundary layer width of order R# is comparable with the gap
between eddies of order ¢;

B =eRi=0(1) (1.11)

(see (3.17) below). In §5 analytic solutions are given, which are valid when the channel
boundary layer width of order R:L# is small compared to the channel width me(M?2+ N2)73;

B> L{(M*+ N*)i = O(L}) (1.12)


http://rsta.royalsocietypublishing.org/

P

,\
A 2\
/ A \
L

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

P ¥

P
A

_‘
=\
/
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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(see (3.18) below). The values of § used in the numerical integrations are large compared with
unity (see table 1 below) so that comparisons can be made with the asymptotic theory. In §6
the limitations of the analytic and numerical results for large £ are discussed with particular
reference to the asymptotic forms of the diffusion and a-matrices

D ~ D (ligly), —o~ ayl—iyiy) (1.13)

(see (4.42), (5.37) and (4.64), (5.69) respectively). The values of D, and «, have irrational
limits which are continuous functions of 6,. The numerical results show that these limits are
approached as R — oo except for a number of strong resonances with flow orientations (M, N)
satisfying (1.12). Of course, the number of strong resonances increases montonically with R
confirming our earlier suggestion that finer structures are uncovered and resolved indefinitely,
as R— co. Put another way, the number of distinct boundary layers is finite for rational
tangents and infinite for irrational tangents. In all cases, however, we have the basic estimate

o, = O(KRe®*) as R->o0 (1.14)

(see (4.64)) similar to the expression (1.7a) for Ka™. Our results thus fully characterize the
asymptotic properties of magnetic induction by mean magnetic fields By perpendicular to the
direction #y of the mean motion.

In the concluding remarks of §7, we estimate the dependence of the a-matrix on the vertical
wavenumber ¢ of the mean magnetic field. Unlike the earlier models, which lack mean flow,
the magnetic field in our mean flow problem is dominated by large flux concentrations in the
eddies. With z-dependence this flux is expelled when the vertical wavenumber ¢ is large
compared with (KR)™. This flux expulsion is unlikely to alter the order of magnitude estimate
(1.14) for rational tangents. On the other hand, for irrational tangents it is the large horizontal
magnetic field penetrating the eddies which is indirectly responsible for the large electromotive
force. The horizontal field in the channels is relatively small and the important vertical channel
field results from outward diffusion from the eddies. With magnetic flux expelled from the
eddies the electromotive force (5.71) evaporates. Thus in the limit ¢ fixed, R— 00, we expect
a, to be at most of order unity in the irrational limit. This is consistent with our estimate, below
(7.7), that the diffusion matrix constant D, is also of order unity in the irrational limit.

The main results of the present study have been summarized briefly by Soward & Childress
(1990a). An extended summary, which outlines a different approach to the large f analytic
solutions of §5, is given by Soward & Childress (19904). The method, which is a variant on
that used here, was recently developed by Soward (1990).

A brief remark is in order here concerning the extensive use of superscript, in addition to
subscript, notation. Since both the heat conduction and magnetic induction equations are
linear, the unknown thermal and magnetic variables all appear linearly. There is, therefore,
generally no confusion between the use of a superscript as a label and a power. Occasionally
there is the possibility of confusion when a streamfunction variable is raised to a power, but the
insertion of brackets before the power is taken hopefully makes the meaning clear. To assist the
reader a summary of the notation used is listed in Appendix B.
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2. THE GEOMETRY OF THE FLOW
2.1. The overall structure

We begin with a detailed discussion of the motion (1.2) in the limit (1.24). Specifically, we
determine the nature of the streamline pattern of the horizontal flow

Uy = Oy +uy = (O /0y, =0y /0x) (Y =¥ +y), (2.1a)

in the xy plane. Here the fluctuating and mean contributions are
Uy = (Y’ /0y, —0yY’/Ox) (Y =sinxsiny), (2.1b)
iy = (Y /dy, —0p/0x)  (f = yu,— ;). (2.1¢)

In the absence of the uniform horizontal mean flow @y, the remaining fluctuating part uj;
is the spatially periodic Roberts (1972) motion, for which the streamfunction ¥ exhibits the
four symmetries

Yntxy) =9 (g, ntx) = FP ' (xy). (2.2)

All streamlines are closed and motion consists of eddies filling squares IT,, , (see (1.4)). The
streamline at the boundary of the square defines a heteroclinic orbit through each of the four
stagnation points, i.e. the four corners where ug; = 0. The addition of the mean flow & breaks
the symmetry of this motion and alters the topology of streamlines; it is this altered topology
that concerns us.

The complete motion (2.1a) no longer has the four symmetries (2.2). Instead there are only
two, which may be expressed in the form

Ymut+ (=1 xmm+(—1)'y) =P, (=)' P (x9), (2.34)
where m, n are integers and

Jm,n = i/_f(mn',mt), [=m+n. (23b, C)

Note, of course, that, since ¥’ vanishes at the corners of the squares IT,, ,, the value ¥,, , for

the mean flow contribution is also the value of the streamfunction (mm, an) for the complete
flow. The symmetry property (2.3a) can aso be used to map the streamline pattern within

n=1i,,, (2.4a)

which we will call the primary square, onto the entire horizontal plane. To understand this
property we note that the pattern is independent of both the additive constant ¥,, , and the
factor (—1)! on the right of (2.34). Nevertheless the form of (2.34) shows that the nature of the
mapping onto the square IT,, , depends on the sign of (—1)!. Accordingly we introduce the
+ superscript notation

I, (leven), IT,, (lodd) (2.45)

to help distinguish the two types of square. On a IT,, ,-square the streamline pattern is related
to that on the primary square by translation alone. For a IT,, ,-square the streamline pattern
on the primary square must first be rotated by 180° about the vertical z-axis through its mid-
point (x,y) = (37, in). This is followed by translation as before. It follows that to determine the
shape of the streamlines it is sufficient to restrict attention to the primary square I7.
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In addition to the spatial symmetry, there are also symmetries of the flow with respect to
certain rotations of the mean velocity vector &;. The obvious symmetry is with respect to a 90°
rotation about the z-axis followed by a translation; for example

'/f("ﬁya@;““‘%x) = —nﬁx+¢(dx)ﬁy;x>y)' (25‘1)

There is an additional symmetry, which stems from reflexion about the diagonal y = x (say)
followed by a translation; for example

Y, T T+ y, x) = — R, — Y (@, 1,5 %, Y). (2.56)

The solutions of our advection—diffusion problems exhibit similar symmetries. In view of the
simple rotational symmetry (2.5a), we may without loss of generality restrict attention to

7,20, @,>0. (2.64)

Furthermore the additional reflexional symmetry (2.54) allows us to restrict the presentation
of our numerical results to the range

zZ, > ,(>0). (2.65)

The topology of the flow is determined by the character of the stagnation points and the
streamlines through them. On the primary square there are two stagnation points; one is X-
type, the other is O-type. When the mean flow satisfies (2.64), they are located at

o (Ba—p,  m—ie+p)l Xetype, (2.74)
. {[%n—%(a+,3)> m+3(@—p)], O-type, (2.70)
where the angles a and f are defined by
sina =YC, sinf=—nlyf (2.7¢).
the fluid fluxes ¥°,y* being given by
ve=y,,=nE+w), Y=y, =nE,—z,). (2.7d)
We note that these angles satisfy the inequalities
—a<pf<asm (x=0). (2.7¢)

Thus, when n7'%° > 1, the angle a defined by (2.7¢) is no longer real and so the stagnation
points (2.7, b) do not exist; their absence implies that no streamlines close and that the flow
is topologically equivalent to the uniform stream @,.

The more interesting situation occurs when n7'4%° < 1. For these slower flows, closed eddies
95, , emerge inside the squares IT% , which contain O-type stagnation points linked under the
mapping (2.3a) to (2.76). Each 2 ,-eddy is bounded by a €% ,-streamline. It forms a
homoclinic orbit, which begins and ends at the X-type stagnation point with coordinates

[ on IT; ., (2.8a)
(%,y) = (mm,nn) +
1 T—x,t—y*) on II, . (2.8b)
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According to (2.3a) and (2.74) the corresponding value of the streamfunction is

(Vhn = Fm =¥ on T, (290)
i R A 2.90)

where ¥° is given by
2Y° = (cosa+asina) — (cos f+ fsin ) = 0. (2.9¢)

An alternative, more compact and useful representation of (2.94, b), which utilizes the fluid
flux ¢ defined by (2.7d) is

'/’ﬁ,n = %m+§,n+§i (%¢C_¢s) (29d)

Though the Z;, , and Z,, ,-eddies have similar shapes, they define essentially different flows,
since a rotation is involved in transforming one into the other. On the other hand, because of
the spatial periodicity of the fluctuating motion uy, the flow uy is invariant under the
transformation (x,y) - (x+mn,y+nn) for integer m,n of even sum [/, a property which is
explained in (2.20) below (see also (2.3a) above). Consequently the 2;, , and 2,, ,-eddies
form two distinct families of similar eddies.

The flow outside the closed 2,  -eddies consists of open streamlines, just like the mean
motion &y. Whenever ¢ = i, for some m,n, that streamline is connected at an X-type
stagnation point to the bounding €, ,-streamline of the corresponding 2% ,-eddy. These eddies
can be thought of as holes (or cavities) in the flow, and they seriously influence the path taken
by neighbouring streamlines (see figure 1a). The effect is also illustrated in figure 154, which
shows the paths taken by streamlines 3 neighbouring #% .. When +¢ <ty . the
streamline takes the long route past the stagnation point following the homoclinic orbit €% ..

0,0 > K \ RN - N
WL i W PP i el g T B0p Topebol LU LN L

FiGure 1. (a) € = 3,tan 6 = %; streamlines of the flow (1.1). A streamline which intersects the boundary does so on
a straight line parallel to the uniform components (i,,,). (b)) The character of 9% , eddies when both

components of the mean flow &, are positive. The solid curves are the streamlines ¢ = % , which include the
eddy boundaries €% ,. The neighbouring streamlines are shown broken.
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On the other hand, when +y > 4y |, the streamline takes the short route bypassing the
eddy completely. This splitting of lagrangian history will have important consequences on the
transport properties of the flow.

2.2. Rational tangents

When the mean flow direction & (see (1.9)) is defined by a rational tangent (see (1.104)),
it is convenient to represent the mean velocity (1.9) in the form

iy =1 (Ay) (M, N), (2.104)
where M, N are relatively prime integers,
Ay = me(M?+ N?)t (2.105)
and for which the stream function (2.1¢) is
U =1 AY) (yM—«xN). (2.10¢)

The value of the streamfunction ¢ at the X-type stagnation points given by (2.9a—c) then has
the form

Vi =¥i = kAY)FyY* on I, (2.114)

where, as usual, the upper and lower signs refer to /(= m+n) even and odd respectively, and,
in view of (2.7d) and (2.94), the integer £ is given by

k= (n4% M—(m+1) N+ (—1)'1L (L= M+N). (2.115)

Relative to a reference streamline ?ﬁiwno( = ;b,:f“ ) of the same class, the fluid flux associated with
an arbitrary streamline (2.11) is

o0~ Vingn, = (AK) (M), (2.124)
where Ak =k—ky= (An) M— (Am) N (2.125)
and An=n—ny, Am=m—m,. (2.12¢)

Since /(= m+n) and [,(= my+n,) are either both even or both odd, it follows that
Al = Am+An is even. (2.12d)

When two distinct eddies 2% , and 2% |, of the same class are connected by the streamline

through their X-type stagnation points, 'the fluid flux (2.124) vanishes and A% is zero. By
(2.125) this condition is met when

Am/M = An/N. (2.13)

The smallest non-trivial solution satisfying (2.12d) is
(Am,An) = (2/7) (M, N), (2.14a)
where Al=(2/1)L (L=M+N) (2.14 )
and 2 for Leven, (2.14¢)
T={1 for L odd. (2.144)
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The result shows that there is a periodic array of @;—,’,r’ n,-€ddies defined by
(my, m,) = (my,ng) + (2r/7) (M, N) (2.15)

for integer values of 7, which are linked together by the single streamline, ¥ = i, passing
through each of their X-type stagnation points. By (2.8) these stagnation points are separated
by the shift

(Ax,Ay) = (2r/7) (M, N), (2.16)

which defines the periodicity interval for the streamlines. As already apparent in (2.14¢, d),
flows with L even and L odd have distinctly different characters and we refer to them
subsequently as E-flows and O-flows respectively.

The fluid flux, A%, between two neighbouring streamlines ¥ , and ¥, of the same class,
is given by (2.12a), where Am and An defined by (2.12¢) are chosen to minimize Ak (see
(2.125b)). According to the euclidean algorithm of number theory the minimum value of A% for
arbitrary Am, An is unity. With Am, An constrained to have even sum Al (see (2.12d)), the
minimum becomes

Ak =1, (2.17q)
where 7 is 2 for E-flows and 1 for O-flows (see (2.14¢, d)). The corresponding fluid flux is
AY = Y, it = (AY). (2.175)

Since streamlines of one class are equally spaced by the fluid flux A¥, a streamline ¥} of one
class generally lies in between two streamlines gbkio + and l/f,fo of the opposite class for some value
of k,. The only exception occurs when the /-even and /-odd families are coincident. In the
notation of (2.114) and (2.12), the condition for coincidence is that

fon =V n, = (AK) (Ag) =29 = 0, (2.180)

for some m, n of even sum / and mg, n, of odd sum /,. By (2.115) we have
Ak = k—ky = (An) M— (Am) N, (2.185)
where An=n—ny+1, Am=m—my—1 (2.18¢)
and Al = Am+An isodd. (2.184)

As a result, Ak is the set of all odd integers for E-flows and the set of all integers for O-flows;
both sets are accommodated by the single statement

Ak =r1—1 (2.194)
for integer 7. As a result, (2.18) is met when
20+ Ay = r(AY) (2.195)

for some integer r, where AY is defined by (2.175).

The result (2.1754) gives physical significance to the fluid flux Ay defined by (2.105).
Accordingly as M, N increase in size the fluid flux Ayr decreases. In particular, in the irrational
limit, (M?%+ N?)i—> o0, we have both Ay and A¥ zero. This means that the open streamlines
through the X-type stagnation points are dense in the region exterior to the closed eddies for
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irrational tangents, tan 6, # A/ N. Furthermore, the periodicity (2.16) is lost ((Ax, Ay) - oo as
(M*+ N 2)§—> 00) and a streamline only passes through one distinct X-type stagnation point.

These basic structural aspects of the irrational limit can also be deduced directly from the
lagrangian paths of particles in the flow. The uniform component carries a lagrangian particle
from cell to cell, intercepting the separatrices of the fluctuating part (2.14) at a series of points.
These points lie on a single straights line making an angle arctan (M/N) with the horizontal.
Thus, modulo 27 in x,y the intercepts are those of a uniform flow on a torus (Arnold & Avez
1967). In particular, in the irrational limit the intercepts are dense on the separatices of u’
and there can be no non-zero flux bounded by two adjacent separatrix streamlines of
Uy (= Oy +uy).

On the other hand, the meandering path which produces the intercepts requires more
geometry than identification with flow on a torus. We focus on these details in the remaining
paragraphs of this section, and in the following §2.3.

When we solve our advection—diffusion problems, we find it convenient, particularly for the
numerical solution, to appeal to the spatial periodicity of the flow and to restrict attention to
two squares of opposite type, for example the primary square IT = ITj , and its immediate
neighbour IIZ, ,. Thus every point (x,,y,) on I, , is linked to (x,y) on II;, by the

m,n
transformation

(%,y) = (X, y,) — (mm,nm) (I even), (2.20q)
while every point (x,,y,) on IT, , is linked to (x,y) on II_, , by the transformation
(%,y) = (X Yp) — ((m+1) w,nm)  (/ odd). (2.200)

The corresponding values of the streamfunction defining the similar streamlines through these
points are given, using (2.3a), by

7 Xy Yn) €IS 2.21a
m,n m!/n m,n

Y(%y) =¥ (*mYm) ~{ _ )
¢m+l,n (xmﬁyn)enm,n’ (221b)

where, from (2.10¢),
Vo = (nM—mN) (Ayr). (2.22)

Suppose we consider a particular open streamline ¥ = ¥, through the point (x,,,) on IT; .
Since both the x and y components of the mean velocity & are positive, the streamline passes
in turn through a sequence of adjacent squares II:—;,T,”' (r=0,1,2,...) with the following
properties. It crosses either the side x = (m,+ 1) @ into 17;;7“,”7 or the side y = (n,+ 1) m into
H;LL,, n,+1- 10 both cases the sum /, = m, +n, increases by one with 7 and, because m, = n, = 0,
it takes the value /, = r after crossing the rth edge. The streamline section on each square m; .,
is mapped alternatively onto I1§ , (I, = r, odd) and IT_, , (/, = r, even). The effect of mapping

the complete streamline onto these two squares is to produce the family of streamlines
[(nr M—m,N) (AyY) (reven) on IIj,, (2.234a)
="y 1(n,M— (m,+1) N)(Ay) (rodd) on IIZ, (2.23b)

which are separated, as in the case of the streamlines y% , of the same class discussed above,
by the fluid flux A¥Y(= TAy, see (2.176)). Furthermore the periodicity section of streamline
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between (xy,y,) on II§ , and (x,+Ax, y,+Ay) on IT3,,, . (see (2.16)) is mapped one to one
onto the family of streamlines (2.23) defined on IT-; o U II§ ;. Note here, in particular, that
under the transformation (2.204) the point (x,+ Ax, y,+ Ay) is mapped onto (x,,y,)-

In the interior of the 2% ,-eddies, we also find it convenient to identify closed streamlines

(gvﬁj‘; 3” = wri,n-’_%bioo’ (224)

where ¥, (> 0) and ¢__ (< 0) are constants. Then, exactly as before for the channel regions,
every closed streamline €, , and %,,, can be mapped by (2.204) and (2.204) onto €5, and
€7, respectively.

2.3. Slow mean flow

The discussion of the advection—diffusion problems in the subsequent sections is restricted to
the case of slow mean flow,

€< 1. (2.25)

With this ordering further simplifications are possible. In particular we can conveniently
evaluate the circulation integral (2.31a) below occurring later in the analysis, and a useful
result of this subsection will be an explicit formula for it based upon streamline geometry for
small e.

One consequence of (2.25) is that the angles & and f defined by (2.7¢) are of order ¢ implying
by (2.9¢) that y® is of order €®. As a result the X-type stagnation points are located close to the
corners of the squares at

[(mn, (n+1)m)+O0(e) on I, ,, (2.264q)
w9 = 1((m+ 1)n,nn)+0(e) on IT, (2.265)
(see (2.8)). The corresponding values of the streamfunction are
Vi = Py T WO +0() on ITE, (2.270a)
(see (2.9d)), where now ¥ defined by (2.74d) is
Yye=LAY) (L=M+N). (2.270)
Here both ¥, +b st and ¥° are proportional to Ay, hence of order €;
Ay = O(e). (2.28)

It therefore follows from (2.27a) that the values of ¥ at the X-type stagnation points are also
of order e. This means that the fluid flux following the open streamlines is small of order €. On
the other hand, since y is given approximately by ', which is of order unity in the interior
of the squares IT% ,, motion is dominated by the order one closed streamline flow inside the
eddies. The mean motion filters past the eddies with an order one velocity in thin regions of
width order €; these regions contain the boundaries of the squares, which are the separatrices
of the flow uy.

As far as the asymptotic analyses (cf. §3) of our advection—diffusion problems is concerned,
it is only the open streamline flow and motion close to the boundaries €3 ,, of the closed eddies
up to, for example, €L, (see (2.24)), where ¥ is of order ¢, that is relevant. We therefore focus
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attention on that flow and ignore the order €* corrections. Within the framework of this
approximation the values of the streamfunction ¥, , connecting the X-type stagnation points
is given by (2.11) with

Ys =0. (2.29)

When L is even, both M and N are odd and, so according to (2.114), £ is odd (even) for / even
(odd). Consequently the i -streamlines alternate;

¥ (kodd)
¥ (k even)

and are separated one from another by a fluid flux Ayr, whereas the fluid flux between two
streamlines of the same class is AY = yif,, — i, = 2Ay (see (2.17b)). When L is odd, on the
other hand, this flux is simply A¥Y = £, — ¥ = Ay. Furthermore the streamline ¥} and
are now coincident (r =1 in (2.195)) and given by

Co: ¥y =k(AY) = { } for E-flows, (2.30qa)

Co:r = k(AY) =yf for O-flows. (2.300)
For both E-flows and O-flows the streamlines C,, bound open channels
D, k(AY) < ¥ < (k+1) (AY). (2.30¢)

If we focus attention to a particular channel D,, it wanders in a complicated way about the
xy plane. Fortunately the asymptotic solutions of the advection—diffusion problems, which we
describe in §5 below, do not depend on the detailed description of the path taken. What is
relevant, however, is the circulation integral

Py
J Uy -dx (2.31q)

Py

over a periodicity section, Fy(%y,%,) to Fy(x,+ Ax,y,+ Ay), of open streamline. To evaluate
it, we note that the streamline follows close to the edges of the squares /T ,. On the side
0 < x < m,y = 0 of the primary square, for example, the flow velocity is given correct to order
unity by the fluctuating velocity «, (¥, 0) = sinx. Hence the contribution to the circulation from
one side is

f sinxdx = 2. (2.315)

0

PA
f Uy -dx
PD

is the same for all streamlines in one channel. If the periodicity section of the channel D, has
S, sides, the circulation integral for that channel is

To leading order the value of

I, =28, (2.32)


http://rsta.royalsocietypublishing.org/

A
A

4
{

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LARGE REYNOLDS NUMBER KINEMATIC DYNAMOS 665

In addition, we require the circulation about the homoclinic orbit bounding the closed eddies.
Since each eddy has four sides, the circulation is

ir=§ ug-dx = +8. (2.33)
%,

+
m,n

Here the minus sign for the &, ,-eddies simply reminds us that the circulation about those
eddies is in the clockwise sense.

As a first step towards determining the number of sides S, on periodicity sections, we
compare the length of two neighbouring channels. Essentially, those sections of channels, which
share a common boundary, have the same length. Differences arise only when one channel is
diverted about four sides of a closed eddy 2 ,, as illustrated in figure 1. Consider, for
example, the dividing streamline Cy(3 = 0) through the X-type stagnation point on &, , at
the origin O(0, 0), as illustrated in figure 2. A periodicity section starting just downstream of
O takes in one @,‘n'n-eddy, namely &7, 502 on/» Defore finishing at O,(Ax, Ay) (see 2.16)). In
the case of E-flows (L even), the streamline C is = ¥ (see (2.30a)) and is only connected
to &, ,-eddies. In the case of O-flows (L odd), the streamline C,, is also of the type y = 9§ (see
(2.305)) and consequently is connected to Z;, ,-eddies. According to (2.18) the coincident
streamlines are Co: Yy = Y2, o = Y3, _y,n» for which Am = M, An = N, and so the &,, ,-eddy,
taken in by C, on the periodicity section OQ,, is 23, _;,y. We now compare the paths taken
by neighbouring streamlines in the channels Dy(y > 0) and D_,(y < 0) just above and below
C, over the periodicity section OO,. In the case of E-flows, four extra sides are followed by the
channel D, in passing round the eddy boundary €, sur. 2n (se€ figure 2a, 7 = 2). On the
other hand, in the case of O-flows there are, in addition, four extra sides followed by the
channel D_, in passing round the eddy boundary €}, _,, v (see figure 24) and consequently the

.

B =

Dlo ]

r

_i,_
gﬂ%

Ficure 2. Symbolic sketches showing a periodicity section of C, from the origin O to O, (= 0"). Streamlines above
(¢ > 0) and below (¥ <0) C, are also shown. The paths between eddies may be very complicated.
Nevertheless they are of equal length and shown broken. (z) E-flow with O,(Mn, Nn). (b)) O-flow with
O4(2Mm,2Nm).

47 Vol. 331. A
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channels D, and D_, are the same length. In summary these arguments show that the number
of sides S, of neighbouring channels are related by

S,c F(—1)k4, E-flows, (2.34q)
1 Se—1s O-flows. (2.340)

Channel periodicity sections for some simple cases are illustrated in figures 34, 44 and 5a.

N4
(a) b
D, (®) 1
| | [ 2
8 ! — Y
! i
! 3 y—y?
| Y
! y—y3
Sooooo-- K - y—y!
6 E 2]!
ola) A4 L
| T - N4
5 4 1) 0 I 1
pupppe———
T !
GC, IN'

Ficure 3. The O-flow M = 0, N = 1. (a) The eddy and channel structure. The primary eddy is labelled with 17
and the sense of circulation in the eddies is indicated by the arrows. The periodicity section on D_, is marked
by the broken line between the dots and consists of four sides. A periodic sequence of points on the streamline
C, at the corners of squares /T , are marked 1-8. (4) The channels on the four sides 7 of I1. The fluid flux
carried on each channel is indicated and the ¢y axis provides a measure of the fluid flux relative to the
previous X-type stagnation point O labelled on the sketch by the superscript ‘i’ alone.

To make further progress we now consider the detailed channel structure near the boundary
of the primary square /1. Special cases are illustrated in figures 35, 45, 56 and the general case
is shown in figure 6. We label each of the X-type stagnation points at the corners of the square
as

0°:(0,0), O':(m,0), O%:(mm), O%:(0,m), (2.35)

which are taken in cyclic order following the sense of the circulation about €;%. We define the
side 7' to be the edge between the corners O° and O™*!, where here and subsequently the
superscript is taken modulus 4 (e.g. O* = O® and O™ = O3?). The value of the streamfunction

¥ =y’ =k(Ay) (2.364)

at each of the stagnation points, given by (2.27), is in turn

Yo =0 (K = 0) at 0°%%, ,cC, (2.366)
Yl = —nw, (k' =—N) at O'e%, _, < C_y, (2.36¢)
Y =n(@,~z,) (K=M—-N) at 0%, < Cyr (2.36d)
¥® = i, (K = M) at 0%c%, , < Cy,. (2.36¢)
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(@) 4,151 ®)
| :j | C 2Aa¥)
13— 16):
"""" T IV b f
Ol | 1 2
: 3(a¥)
e 411 oy — -
EIO - _ 3 w_qﬂ
e llo 8 -yt
:'4 5 C y—yo
! " 2a¥)
! 0 | —
C, B ___2¢ 7 f =

@ | Sl
SjE * |

G 3(a¥) AW

Ficure 4. The O-flow M = 1, N = 2. (a) As in figure 3 except that now the channel D, is indicated. Note as in
figure 25 that eddies of both classes are connected alternately on both C; and C,. A periodic sequence of points
1-16 on C, is marked. (5) As in figure 34 except that only the total fluid fluxes entering and leaving the corners
of IT are indicated.

(a) ®) Af’
| 2
4! 5 N'4 z(_A»W)
———————— ——
Sich. S T
| Jer-
! -
13 6i | . o
G150 e A
3 2N
it |2 y—yo
n I
o) 0 -
eI 1
' i l |
“ OIS "
1 2(aw) J AY

Ficure 5. The E-flow M = N = 1. (a) As in figures 3 and 4 except that now the periodicity sections on both D_,
of two sides and D, of six sides are marked, bounded by the three streamlines C_,, C,, C,. Note as in figure 2a
that only eddies of like class are connected, for example &, , on C,. Two periodic sequences of points 1-6 on
C, and 0" to 5" on C, are marked. (b) As in figure 4.

47-2
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If we are interested in motion outside the closed streamlines €Z% (see (2.24)), it is
appropriate to restrict attention to the y-range

WAV )P <Y <YL(=Pi+y,) on T (2.374)

with Y =K. (AY). (2.370)
On the interior €5 ,-edge (2.27), (2.374) and (2.11) give

YU =yg,=mi, (K, =M) forall (2.38)

while on the exterior €, ,-edges they give

Yl=y5 . =—n(@,+w,) (*=-M-N), (2.394)
Yl =y1,=—2ng, (k* =—2N), (2.39b)
Yl =1y, =n(L,—1, (k* = M—N), (2.39¢)
Yi=9,=0 (k2 =0). (2.394)

Furthermore the channel regions alone are defined by
Vi<y <yl on T (2.40)

In that case if we wish to consider only the channel regions in IT~; , U ITj ,, those on IT_; ; can
be mapped by (2.206) one to one on to the outer half of the side 7° (i = 1,...,4), which lie
exterior to the primary square I1. In other words, rather than map the periodicity channel
sections on to I1_, o U IIj ,, it is more convenient to map them directly on to the four sides,
U, 7 From (2.38), (2.39) and (2.40) the number of channels on each side is readily
calculated from the corresponding fluid flux. It is

U=yt =Y+ AYtt on T, (2.41)
where Ayt = —AYP = M(AY) = iy, (2.42q)
—AY° = Ay® = N(AY) = na,. (2.420)

Here ¢, defined by (2.7d) and (2.27), is the average of the fluxes carried on each of the sides
circulating 11, while

(see (2.36)) measures the fluid flux between the streamlines through the stagnation points O**!
and O at either end of the side 7. We note also that whereas the flows on J° and ' are
directed in the positive x and y directions respectively, the flows on % and 2 are directed
in the negative x and y directions respectively. Consequently the x and y components of the
mean motion & are given by

= o (YA, 6= (Ag— Ay 244

independent of ¥°. Nevertheless in our advective diffusion problems, the circulating flux ¢
plays a central role, as we shall see in §3.
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Ficure 6. The 25 , eddy on the primary square /7 and its immediate neighbours 27, , D5 _;, 97, and 25 . The
fluid flux carried on each of the sides J ' is shown together with their partition by each of the X-type
stagnation points O (see (2.42)). The closed eddy streamline boundaries €5 , (see (2.38)) and %, , (see (2.39))
are also shown.

Before proceeding we note some other useful relations between ¥, %, and Ay defined by
(2.36) and (2.38)~(2.42). They satisfy

20y =y = £+ AP+ Ayt (2.454)
AP 4 Ay = 0, (2.455)
Y —yit = 2(AYY, (2.45¢)
which imply for example that
W=y + (P =y = 2y (2.464)
Yyt =y, (2.46 )
Uyt = 2Y0 4 Ay (2.46¢)

We return now to the question of the number of sides S, on the periodicity sections of
channels D,. We consider the flow between two neighbouring streamlines of the same type {j
and ¥, (say), which carries fluid flux A¥Y = 7 (Ay) (see (2.174)). A convenient choice is the
pair of channels D_; and D, (k= —1 and 0, 7 = 2) for E-flows and the single channel D,
(k =0,7 = 1) for O-flows. Taken over a periodicity section the total number of sides involved is
7(S,_,+5S,) for both types of flow. According to the remarks below (2.23), these sides are
mapped one to one on to the rectangle I1-, , U II§ o excluding the two eddies 2-, , and Zj
enclosed by them. This region is equivalent to the four sides UL, 7 of the primary square
which carry a total of 4¥°/(Ay) = 4L channel sides. This gives

T (Sp1+8) = 4L, (2.47)
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which with (2.32) and (2.34) yields the main result of this section, namely
I,=2S,=(8/7)4,L, (2.48)
where 4, =1+(—1)*(r—-1)/L. (2.49)
We note that 4, has the obvious properties
s 4+ 4,,)=1, 4,,,=4,_, (2.50)
and introduce for convenience later the parameter
A=4,4,,, =1—(1—1)/L% (2.51)

An alternative derivation of (2.34) and (2.48) based on the use of a shift map on channel
streamfunction, is given in Appendix A.

3. THE ADVECTION-DIFFUSION PROBLEMS

The flow field we have described in §2 contains features of interest in the advection and
diffusion of scalar and vector fields. It shares with the flow of paper 2 the presence of islands
of closed streamlines separated by channels, but now the channel connections are far more
complicated and are dependent upon M, N.

In the present section we study the effect of this flow on scalar and vector fields. The scalar
problem has many applications, but we shall take the view here that the scalar field is a
temperature field, and so will use the terminology of heat conduction to describe it. The vector
field of interest is a magnetic field, and we use the methods and terminology of dynamo theory.
As we shall see, the temperature problem is in fact a prerequisite in magnetic problem, and this
was our original motivation for studying it.

3.1. The heat conduction equation

In the thermal problem we consider the temperature field A*(x,y, ¢) which occurs when a
steady applied temperature gradient

gu=V4 (4=1g,+yg,) (3.1)

in the horizontal plane, is advected by the horizontal motion uy (see (2.1)). In particular the
vertical components of the motion need not enter. The quantity 4 conveniently defines the
secular or spatially growing component of 4, but it is not an average of 4. Indeed 4 is not
invariant under translation, and 4 simply isolates this property, in a function that vanishes at
the origin, the remainder of the field being spatially periodic (see (3.3) below).

A* is also time-dependent because of the advection of 4 by the mean motion. The steady
transport of cooler fluid by convection up the gradient causes the temperature to decrease with
time. The time-dependent component may be expelled, however, by setting

A* = — 1+ A(x,y), (3.2a)

where the scalar 4 is steady, independent of both vertical coordinate z and time ¢. In terms of
our dimensionless variables, A4 satisfies the heat conduction equation

Uy VA—E = R'V24, (3.25)
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where the constant F=i,-g, (3.20)
represents a heat source and R is the Péclet number for the flow. Solutions of (3.2) are sought
in the form

A=A+ 4, (3.3)

where 4, like ¥’ in (2.15), is spatially periodic. Specifically, we assume that 4 has the
transformation property

Amr+x,nm+y) = 4, ,+A(x,y) (I even), (3.4a)

where m,n are integers with even sum / and

A, , = A(mm, nm). (3.4b)

m

Since A’ is determined only to within an arbitrary constant, its normalization remains at our
discretion.

The quantity of physical interest is the heat flux uy 4. Since 4 increases secularly in space
(see (3.1)), it is convenient to remove that secularity in the heat flux and consider the quantity

F,=ugzA—uy4, (3.5)
instead. Our prime objective is to define and evaluate the mean heat flux Fy, in which (3.5)
is averaged over a suitable and carefully chosen domain (see (3.31) below). Since 4 is only
determined up to an additive constant, it is clear from (3.5) that the value of F; will depend
upon the normalization of A4’; it is determined only up to a constant multiple of #;. One
possible normalization requires that the integral of 4" over II_, , U 11§ ,, like the fluctuating
streamfunction ¥’, vanish (see (2.154)). On the other hand, when R is large, the value of 4’ in
the eddies is an order of magnitude R: larger than its channel value. So, if we demand that 4’
averaged vanish, the value of 4" and consequently 4 itself in the channel regions would be of
order R%. Since it is clearly the temperature distribution in the channel regions that is of interest,
it is more natural to require that 4" be of order unity in the channels, so that 4 correctly reflects
the temperature distribution there. Thus, we choose a different normalization given by (3.27 5)
below. We stress, however, that other choices are possible and that the average F;, defined by
(3.47) below, must be interpreted in the light of the chosen normalization. In any event our
result is linearly related to the applied temperature gradient gy and can be expressed in the
form

F,=-D-g,. (3.6)

The 2 x 2 matrix D is an effective diffusion-matrix. Again, the arbitrariness inherent in F; for
a flow with non-zero mean motion reflects in the non-uniqueness of D. The effective diffusion
term V- F; remains, however, uniquely determined.

3.2. The magnetic induction equation

In the magnetic problem we seek steady z-independent solutions of the magnetic induction
equation

Vx(uxB)+RW:B=0 (V-B=0), (3.7a)
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where now R is the magnetic Reynolds number for the flow

u = (2 /3y, —oy/ox, Ky). (3.76)

Here (= ¢ +y’) is the streamfunction for the horizontal velocity (2.1), and Ky’ is the
vertical velocity appearing in (1.24), where K is a constant. We express the magnetic field in
the form

B = (04/dy, —0A4/ox, KB), (3.8)

where A is the magnetic vector potential for the horizontal magnetic field, and KB is the
vertical magnetic field ; the latter is scaled like the vertical velocity with the factor K. Solutions
of (3.7a) are sought subject to the condition that the mean magnetic field is uniform and
horizontal :

B= By = (04/0y, —0d/ox) (A= yB,—xB,). (3.9)

Advection of the mean magnetic field By by the horizontal mean motion @ leads to the well
known w-effect of dynamo theory (see, for example, Moffatt 1978). It induces the vertical
z-component of the electromotive force

—E = (i x By),. (3.10)

Since the magnetic field is steady, the electric field is potential, E = — V¢, and the z-component
is at most a constant E. Consequently the z-component of Ohm’s law again yields the heat
conduction equation (3.24). The mathematical problem which emerges is exactly the same as
the thermal problem if we make the identification

B,=g, B,=-g, (3.11)

(see (3.1) and (3.9)). Thus, as already noted above, solution of the thermal problem is a
preliminary prerequisite for the complete solution of the magnetic problem.
From the z-component of the magnetic induction equation (3.74) we have

Uy VB—R'V:B = B, -V, (3.12q)
where, from the definition (2.1) of the velocity,
By VY’ =—u,-VA+ua,-VA. (3.125)

The inhomogeneous conduction equation (3.12a) is solved subject to the condition that the
mean value KB of the vertical magnetic field vanishes (see (3.9)). From the solution we can
determine the mean horizontal components of the electromotive force, KEy, where

KEy = (ux B)y = K[(y — ) VA— BVy]. (3.13)

This is the main quantity of physical interest in the dynamo context and leads to the well
known a-effect (see, for example, Moffatt 1978). In view of the linearity of the kinematic
dynamo problem, the result (3.13) is linearly related to the mean magnetic field By,

KE, = a- B, (3.14)

where « is the 2 x 2 a-matrix. Evidently there are similarities between the formulation of the
mean heat flux (3.5), (3.6) and the mean electromotive force (3.13), (3.14). They are also
reflected in the results we obtain in §§4 and 5 below.
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3.3. Asymptotics for large R
Our analysis will ultimately be restricted to the case of large Reynolds number
R> 1. (3.15)

In this limit and in steady flow, we generally expect diffusion to be unimportant except in thin
boundary layers. These are triggered at the X-type stagnation points on the closed eddy
boundaries €% . The reason for the existence of these boundary layers is easily understood.
Fluid approaching the stagnation point arrives from regions in which the values of 4 and B are
different (see figure 14). Thus, when the streams merge downstream of stagnation point, the
values of 4 and B differ and the resulting discontinuities must be smoothed out in thin
boundary layers. An example is illustrated in figure 7 of the closed eddy 27, , bounded by
%~,.0, which lies on the streamline Cy:3% = 0. Two boundary layers form. One is the
recirculating eddy boundary layer on %_, ,, which has width of order R, The other is the
channel boundary layer on C, (but excluding %, ,), whose width continues to grow
downstream until it arrives at the next stagnation point. For flows with rational tangents the
distance between stagnation points is of order L (see (2.48)), and so the channel boundary layer
width is of order L:R: For flows with irrational tangents the boundary layer thickens
indefinitely until neighbouring eddies overlap and join.

OR™Y

FiGure 7. Symbolic sketch of the two boundary layers both triggered at the origin O° namely the eddy boundary
layer on %-, ; and the channel boundary layer on C; (but excluding %, ). The broken lines indicates their
outer edges, while the hatched regions identify the regions closest to the sources at O°.

Inside the closed eddies, diffusion is unimportant and a mainstream (or outer) solution is
easily constructed (see §§3.4.1 and 3.5.1 below). For our slow mean flows

€<, (3.16)

the total width of the region external to the eddies is of order € (see §2.3). Hence as we indicated
in the introduction the ratio of the total channel region width to boundary layer width is

p=cRt (3.17)
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(see (1.11)). When f is of order unity, 4 and B are governed by boundary layer equations in
the channel region, which we solve numerically in §4. Further mainstream solutions exist in the
interior of the channels when the channel width, of order Ay = me(M2+ N2)73 (see (2.105)),
is large compared to the channel boundary layer width of order LiRE, specifically

B> LHM?+ N?)i = O(Lf) (3.18)
(see (1.12)). The leading order approximation of these mainstream solutions is obtained in §5.
The mainstream solutions inside the closed eddies provide boundary conditions for both the
numerical solutions of §4 and the analytic solutions of § 5. They also show that the contributions
to the mean heat flux F; and electromotive force KE; originate from the channel regions and
the appropriate integral representations for them, namely (3.47) and (3.69), are derived. It is,
therefore, convenient to present those eddy solutions in the following subsections before turning
attention to the channel solutions in §§4 and 5.

3.4. The thermal problem

3.4.1. The eddy solution
In the slow mean flow limit (3.16), the heat source E defined by (3.2¢) is small;

E=0). (3.19)

Consequently in the mainstream and in the eddy interiors both the diffusion term R'V24 and
the heat source E in (3.254) can be neglected at lowest order;

(uy-V)A=0. (3.20)
It follows that A4 is constant on streamlines of the horizontal flow,
A= ARy, (3.21)

Departures from this functional form are of order ¢ and R™' and smaller. Moreover 4 is
independent of R at leading order. The implied dependence on R in (3.21) reminds us that
boundary layer matching may lead to corrections of order R, Though those corrections were
obtained in paper 2 through the use of the Wiener—-Hopf method, they will not be considered
here. For references to the Prandtl-Batchelor theory used in the present section, see paper 2.

The dependence of 4 on i is determined as in paper 2 by a consistency condition at higher
order. We consider the closed domain Z(y) bounded by the closed streamline, € (¢):¢ =
constant, within a 2%  -eddy. Integration of (3.26) over Z(y) and application of the
divergence theorem yields

ff Aug-nds = EZ+R-1§ n-vAds, (3.22)
€ ¥

where n is the unit outward normal, s measures are length and 2(y) is the area of 2(¢). Now,
whereas the term Sﬁ@ Auy-nds is in principle of order unity and dominates (3.22), we have
chosen € (i) to be a streamline on which u; - n vanishes. Consequently, we are left with the two
smaller terms on the right of (3.22). Within the framework of the approximation (3.21), the
remaining integrand in (3.22) is given at leading order by

n-VA4 = — Regh, (3.234)
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where 1 1
RW(RYy) = d4/dy, ¢=—n-Vy. (3.23, )

Since arc length is measured counter-clockwise about €, the element of directed arc dx is
related to ds by

Uy -dx = — (n-Vy) ds, (3.23d)

and so ¢, defined by (3.23¢), is the velocity. Substitution of (3.23) into (3.22) yields the
consistency condition

yb = REX, (3.244)
where v(y) =§ Uy dx = § gds (3.24b)
€ €

is the circulation. We note for later use in the magnetic problem, that the yr-derivative of
(3.244) yields

db _ pp(d2_Zdy
Yag E(dw ydw). (3.254)

From the definitions
Z=J d2 and y=§ Uy -dx,
2 %

it is readily established that

dx jg 1 dy 1
—=—0¢ =ds, —==¢ -V¥ds. 3.25b
dy %9 dy ©q v ( )
Of particular importance are the values of 4 and 4 close to the eddy boundary. Correct to

lowest order the eddies 2, , are squares of area (X =) n%, while the circulation about them is
(y ==2I =)%8 (see (2.33)). Thus the mainstream value of b on the eddy boundary €% , is

b=1b, (3.264)
where the + sign relates to the sense of the circulation, and
b= lRn’E (3.26b)

is of order f(= €R?). Our scaling of b in (3.235) has been chosen so that 4 is of order unity when
B is order one. In view of the secular behaviour of 4 and the result (3.21) a natural
normalization of the mainstream eddy solution is

4= “Tm+%.n+§iA0 on (g%,n”ﬁ = wi,na (327 a)

where 4,,,1 ,.1, defined by (3.45), is the mean value of 4 on the square ITf ,. The additional
constant 4,, as yet unknown but determined by the solution, reflects the fact the periodicity
condition (3.4a) links the solutions only on eddy boundaries of the same class. It does not relate
the values of 4 on %}, ,-boundaries to those on ¥,, ,-boundaries. The choice of + 4, on the
%3 ,-boundaries means that, with the secular part 4,, +1,n+3 TEmoved, the average of the value
of 4 on two neighbouring eddy boundaries vanishes. Of course, 4 cannot take exactly the value
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(3.274) on %% , because of boundary layer corrections. Nevertheless, when combined with
(3.264a), we can instead impose the matching condition

A~ [REY =k )+ Aol + Ay g a5 ERWY—y ) > o0, (3.276)

By this device we render our solutions unique. Though, as we remarked in §3.1 above, other
choices of normalization are possible.

3.4.2. The heat flux

We now consider the contribution to the heat flux made by the closed surface 2 (¢) inside
the eddies. Since 4 is a function of ¢ alone, the divergence theorem implies

f@AV;&dE:Lv(fAdw)d2=(fAd¢)£nds, (3.284)

which gives J Auyd2 = —-(IA d¢)§ dx = 0. (3.285)
2 ¢

It shows that the large order R values of 4 implied by (3.235) do not contribute to the heat
flux. Thus the transport of heat is confined entirely to the channel region and the eddy
boundary layers. To compute the heat flux, we exclude the interior of the eddies by restricting
attention to the region exterior to the closed streamlines ¥:% (see (2.24)), in which

+Y,, = O(R?). (3.29)

With the bulk of the motion excluded we are left with the narrow strips
T (m+Ln):mn<x< (m+1)n, y=nn, (3.304q)
T, (mn+3):x=mn, m<y<@m+1)m, (3.30b)

containing edges of the squares /T, ,. The mid-points of the sides 7, (m+4,7) and T, (m,n+})
are located at the centres ((m+3) @, nm) and (mm, (n+3) ®) of the displaced squares I, , yand
IT,,_, , respectively. We now define local averages F,°, F;* of the x and y components of the

flux F; (see (3.5)) over each of these squares of area n® by

(F;:OC(m_*_%, n)’F;OC(m,n-l-%)) = -T%E(J F;.dz,f F;dZ) (331)
1T 1 I, _1

m,n—z m-z,n

On each of the sides ,(m+3,n) and 7, (m,n+}) the flow velocity is aligned to them and given

by u,(= 0y /dy) and u,(= —0y/0x) respectively. The contributions made by uy 4 to the local
average of Fy is

1
F( f A@y/dy) dE, — f Ay /0x) dz), (3.324)
T y(m+},n) T y(m, n+3)

while the local average of @;; 4 is

(Am+%.n17:u Am,n+%17 )- (3.320)
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Together the results (3.32) yield

_ 1 [tm+Dn 3
Fo(m+g,n) = _2'f Uw A dw) dx— A1 0, (3.33a)
T Jmn Vmn
» —1 [tn+Dm %
F;oc(m,n+%) =z (J:*w Adlﬁ)dy m, nsd oy (3.33b)

Here some care is needed over the limits of the -integration. In both (3.33 a, b) the upper limit
is the value %% on the curve %%, inside the eddy 2% ,, while in (3.334, b) the lower limits
are the values lﬁm'n__l,lﬁm_l.n on the curves %;%_,, %>, , inside the neighbouring eddies
D a1 Dy, respectively.

The assertion that F}*° and F,*°, defined by (3.33), provide local averages hides a further
complication, which is that the y-integrals diverge as iR%Iﬁiw (see (2.24)) tends to infinity.

Specifically, we see from (3.275) that

+ 00
JV CAdy ~mFES g as E R, > o0, (3.344)
where n 1;-(:3 nel = t (%R%E[¢iw]2+A0 Wioo) +A—m+%, n+%<lﬁimi%¢c)a (334b)

and the final constant + Am+1 n+1¥° (see (2.7d)) is included for convenience. The main point
here is that we have already estabhshed in (3.28) that the eddy contributions to f uHAdZ
vanish. This is reflected in (3.33a), for example, by the fact that, on the eddy 22
contribution to Fi°°(m+3,n) comes from the upper range of integration

EA8
[ aay,

while the contribution to Fi**(m+1%,n+1) comes from the lower range of integration

f Ady.
Vi

It is therefore convenient to cancel out these divergent parts, namely Ff3 A nst from F**(m+1,n)
and —Fi3 . from F°(m+3g,n+1), before evaluating (3.33). The additional constant
included in (3.345), of course, cancels when the contributions from one eddy boundary are
added to the next. We have included it to eliminate any remnant spatial secular features of F1°°,
F*°. Accordingly we define the four finite parts

he

m,n’

+F® = Floo(m41 ) — (FER as—FE3 0t)s (3.35a)
F;’ = F°(m,n+1) + (FER = FE% ns)s (3.35b)

where FY, —F3 and — F2, F, correspond to the upper (/ even) and lower (/ odd) superscripts
respectively. Use of the transformation property (3.44) and noting the channel characteristics

(2.37) to (2.41) yields the result

nF;=% ﬂ ( J: iAd;ﬁ)ds—n FL—Fi ) =LA+ ') (A, (3.36)
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in which s is either x or y depending on the value of . Here we use the notation

A =4, F =F% (i=0,..,3) (3.37)

11 11
22’ @ 202

Lob gy 0, (3.384)

_ A 1, Fr, 1, 3.38b
A_ — 22 Fioo — 22 = ( )
4y, Fif, 2, (3.38¢)

Ay, F, 3, (3.384)

to define values on the neighbouring Z;, ,-eddies. Thus F; takes the same value on all sides
T (m+3%,n),T,(m,n+3) to which it refers and, in particular, defines the contribution from the
side ¢ of the primary square IT.

Inside the channel regions, 4 is no longer simply a function of ¢ but depends on the distance
s along the streamline as well. For the boundary layer formulation of the following sections we
find it convenient to introduce the circulation integral

P
o= J Uy -dx (3.39)

(cf. (2.31a) above). The variation of 4 with respect to o continues to be relatively small, and
we find it convenient to keep the notation

Rib(o, ) = 0A/0y (3.40)

introduced in (3.235). Accordingly, an alternative form of (3.36) is obtained by integrating
fAdlﬁ by parts. It gives, with the help of (2.45) and (2.46),

TRF = F', —(FL—F)+R(4,—IA6) (AYY), (3.41)
where 7, = ——R{% J: [ f:ﬁ" (W — ) bdz/f] ds} (T T, (3.420)
and F'o= IR0y, — YT, (3.42b)
Flow = TIRO[Y YT+ RA(AA, ) (Pl —¥). (3.42¢)

The y-notation is defined by (2.36) to‘(2.42). The jumps
—Ab =4 -4 (3.43)

in 4,, , between neighbouring eddies are given by

Ab' = —Ap? = g, (= —nB,), (3.444)
—Ab® = Ab® = g, (= nB,). (3.440)

The final remainder term in (3.42¢) proportional to A4, which denotes the difference
between A4 and its asymptotic value (3.27b) evaluated at ¢ =y, vanishes when
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+ R%, . > oo. Furthermore the term #% —#' _ is included in the definition (3.424) of & o,
so that it tends to a well defined limit

Fi= lim (F), (3.45)
iREnﬁiw—»oo
when both —R%ghoo and R%Q&w tend to infinity. Finally, in terms of the finite parts (3.41) we
define the mean heat flux by

Fy= Jim [(F;—F;),3(F,—F})]. (3.46)
LRI, oo
Its components are
F = RS - 58— Ry, — 4,7, (3474)
U= 7 - Ry, + A, @47

We again point out that the value of F; obtained in this way is dependent upon the
normalization (3.274). Other normalizations change F; by an amount proportional to @y. So,
for example, under a suitable normalization the middle terms — LRy, in (3.47) could be
removed. The advantage of the representation (3.41) over (3.36) for F! is simply this: by using
(3.41) we can largely ignore 4 in the following analysis and focus attention on the non-secular
field b.

3.5. The magnetic problem
3.5.1. The eddy solution

The solution to the thermal problem resolves the horizontal part of the magnetic field By,.
To complete the magnetic problem we must solve the inhomogeneous heat conduction
equation (3.12) for the vertical magnetic field KB. Non-zero values of B are stimulated by the
source By - V¢’ on the right of (3.124). In the mainstream and, in particular, the eddy interiors
two approximations can be made. First, as in the thermal problem, the diffusion term R™'V?B
in (3.12a) can be neglected. Secondly, since we have already established that to leading order
A is a function of ¢ alone (see (3.21)), the term uy VA4 in (3.125) is small and dominated by
the remaining term

fy-VA = Rebiiy -V = — Ribuy-Vij. (3.48)

Hence to leading order (3.12) reduces to
uy V% =0, (3.49a)
where B = B+RWb(Y). (3.49b)

As in (3.21) above we deduce that # is almost constant on streamlines and given to leading
order as a function of ¥ alone;

B=RBRYLY). (3.50)

We proceed as in §3.4.1 to integrate (3.124) over an eddy domain (i) bounded by the
closed streamline € (y). This gives, in place of (3.22), the exact result

o=f nH-VAd2+R-13€ n-VBds, (3.51)
9 €


http://rsta.royalsocietypublishing.org/

y
A4 A

A
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AN

A \
amn

yan \

|

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

680 A.M.SOWARD AND S. CHILDRESS

where we have set all contour integrals about € involving u-n equal to zero. We now may
evaluate separately the two integrals in (3.51). Application of the divergence theorem to the
first integral yields the identity

f - VAdE = — ff YVA-dx = — ff 7 Wy -VAds. (3.524)
2 %

(4

Here we evaluate uy;+ VA from (3.24) using (3.21) that A4 is a function of i alone. We obtain,
with (3.23),

uy-VA = E+R3q%(db/dy) + (V) b). (3.525)

For the second integral in (3.51) we use the formula (3.494) and results similar to (3.23). This
yields

d# - db
R”1§ n-VBd =R‘1§ (———+RE —
e VBds N\ dp Ty

in which the last integral vanishes because 4 and Vi are constant on ¢ and ﬁﬂtd: is zero. We
now form the sum (3.51) from (3.52) and (3.53), and make use of the identities (3.24), to

obtain
e £ v

)qd;—R—% ﬁ; b(VY)-nds, (3.53)
€

To evaluate (3.54) we note that, when the mean velocity is slow (¢ € 1), motion is dominated
by the spatially periodic contribution ;. Tolowest order therefore, g and ¥ have the symmetries
corresponding to |u}| and y’. It follows that (3.54) is given to leading order by

a0 = R nenaf, 114 () )
—=—REY 1 on® =51+ = | (V3Y) 1 ds, 3.55
'ydw ‘ﬁ +3, n+3 (gq ,y ( 'ﬁ) ( )
where ¥,,,1 .1 is the value of ¥ at the centre ((m+3)®, (n+3) ) of the P  -eddy under
consideration. In view of the result (3.25), this equation can be integrated giving

B = R4y 0y bY) + B, (3.564)
where B , is a constant. With (3.495) it yields
B = =R~y n) () + B3 (3.562)

Since B is spatially periodic, all B;, , and B,, , separately take the same value. In addition,
since B has zero mean, it follows that

B . =1B, (3.56¢)

where By is a constant, which is determined, like 4, in (3.27 a), as part of the complete solution
of the problem. Consequently (3.564) provides the boundary condition for the channel flow,
namely

B~ F Ry =Y st nn)) b—By] as R(Y—yt ) —>oc0. (3.57)
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3.5.2. The electromotive force

As in §3.4.2 we consider the contribution to the electromotive force made by the closed
surface 2 (i) inside the eddies. Since, correct to leading order, 4 and # are functions of ¥, the
formula (3.13) for KE reduces to

E, = 6VY, (3.584)
where & =Ruyb—A. (3.585)
By use of the divergence theorem we thus obtain the result
f EHdZ=(fé"dtﬁ)§ nds=20 (3.58¢)
2 €

(cf. (3.28) above). There is, therefore, no contribution to the mean electromotive force at this
order from the eddy interiors. We may then proceed as in the case of the mean heat flux
calculation to restrict attention to the region exterior to the closed streamlines €%,

The boundary layer analysis of §§4 and 5 below show that B continues to have the form
(3.49b) and, like 4 for the thermal problem, has the functional form

B(o, ) = B+ Rjb(o, ). (3.59)

The important point, however, is that the yr-derivatives of # dominate. We can, therefore,
define as before the local averages

_ — 1
(B (m, n-+3), B (m+4,m) = n—(f E, dz,f E, dZ) (3.60)
m,_1 1 1

m-gzn m,n—g

on the sides ,(m,n+3), 7, (m+3,n), where they reduce, as in (3.32), (3.33), to

_ 1 [+D= EA

EXe(mn+3) = 1—?[ (J‘W~ é’dlﬁ)dy, (3.61a)
nn YmZ1,n

_ 1 [@m+Dr Ui

B (m+bm) = ( f é”dzﬁ) dx. (3.615)
mn Vmin-

Substitution of (3.264), (3.564) into (3.584) and use of (2.27 a) shows that the asymptotic form
of the integrands of (3.61) on the 2% ,-eddy is

&~ R[(Y—yi ) L5315 F B, (3.62)

It follows that
ﬁ"""&dw ~mE*® a5 +Rby, o0, (3.63a)
where nE*® =+, ARW(Y, +¥°)— By}, (3.63b)

which unlike (3.34) does not increase secularly with m and #. As in the thermal problem, the
divergent parts of E,*°, E*® cancel between the opposite sides of eddies and so we define the
finite parts

+ED = EX(m,n+1) F (E®—E~), (3.644)
+EP = E(m+4,n) F (E*—E™®) (3.645)

48 Vol. 331. A
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similar to (3.35). Use of (3.635) shows that their values on the four sides 7 of the primary
square are

nRE = &' + (8.6, (3.65)
: (1 Vo
h &, =R —f f &dyr|d (6, -8 ), 3.66
where . {n 0[ " lﬁ} s} ) ( a)
and &' = TRy, — ") GRE[— (¥, — ") Y] — By, (3.66)

1

oo = L R(YY o — ") BRE[(Yy o —¥') =20, — ") 9] — By} (3.66¢)

Furthermore, since the integrand & in (3.61) is spatially periodic, the results (3.64) are
independent of m and n.
Finally we let

&= lim (&) (3.67)

and define the mean electromotive force

Ey= Jim [—3(E—E),3(E)—E))]. (3.68)

iR%;[ftw—)OO
Use of (2.42)—(2.46) shows that
E, = —ln"'R & — &%+ B, i, (3.694)

E,=in"'R3(8—&2) + B, i, (3.69b)

The apparently clumsy formulation of the mean electromotive force in (3.66) is motivated by
our development of the boundary layer problem in the following section. There we measure
fluid flux from the streamline through the stagnation point at the start of each side 7 by the
use of the coordinate ¢ —y' (see also (A 2)). So once solutions of the thermal and magnetic
problems are obtained, we proceed to evaluate #* and &', which are necessary to determine
the mean heat flux F}; and the mean electromotive force KEy; defined by (3.47) and (3.69)
respectively. Of course, the final representations, which we have obtained for Fy; and Ey, are
intended to highlight their similarities and to emphasize the close relationship of the thermal
and magnetic problems.

4. THE BOUNDARY-LAYER PROBLEM
4.1. The stretched coordinates

In this section we consider the case
eRi=p=0(1), R>1, (4.1)

for which the total channel and boundary layer widths are comparable. This ordering implies
that the mean velocity &y is of order R™* and we therefore define

gy = R%ﬁH B= n_ll"HI)’ (4.2)
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where || is of order unity. In the channel region i is small of order R* and so we introduce the
stretched stream function

1

= Ry, (4.3)
and define C=n"(yp,—x,). (4.4)
In the case of mean flows with rational tangents, we write
e = (Af) (M, N), (4.54)
where M, N are relatively prime integers and
nH(Ag) = (M + N?) (4.5b)
(see (2.10) and (4.1)). The channel boundaries (2.30) are then
Cp: &= & = KAL) (4.6)

for integer values of £.
As we have explained in §3, it is sufficient to consider the four sides 7 of the primary square
II. The value of { at each of the X-type stagnation points O at the beginning of each side is

¢'=Ry' (§={atOl). (4.7a)
In the case of flows with rational tangents, the streamline through O is
Ci g = =K(AD), (4.75)

where the values of &* are given by (2.36). On the side 7 ¢ we take O as the origin and introduce
and stretched streamfunction

E={-C=R{y—y". (4.8)
The other coordinate, namely the circulation integral o (see (3.39)) is also measured from O,
where it vanishes. It increases to 2 (see (2.315)) at the next X-type stagnation point O™! at
the end of the side. In terms of our new &, §-coordinates each side I of the primary square
I is defined by

Th0<0<2, —w<§g<oo. (4.9)
The side begins and ends at
0%:(0,0), O"':(2,Af) (4.10q)
respectively, where G- = AL = RYAYY) (4.100)
as in (2.43).
On each side 7, the £-coordinate of the € ,-eddy boundary is
£, =L - =RyL -y, (4.11a)
where, from (2.36), (2.38) and (2.39),
£ =1, g =n+mn, &=9, E£=0, (4.115)
L==n,—n, &=-n, £=0, g=—, (4.11¢)

48-2
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For completeness we note from (4.105) and (2.42) that

AL =—n,, A&=1, AF=9, AL=-1,. (4.12)

The quantities &, and A’ satisfy several simple relations some already listed in (2.41)-(2.46).
We collect together here the following:

g4+ =AL, E+E1=0, (4.13a, b)

LT = 0 = 2, — (A ALY, (4.13¢)

gt =8, AGT+HALT =0, (4.134d, ¢)

where E=n+n, =Ry, §=9,—n,=Ry" (4.131)
The closed streamlines €% in the interior of these 27 ,-eddies have the coordinates

Lo = L= 8 = BP9, (4.140)

where Ciw=Cn—C. =R, . (4.14b)

The flow at the end of the side J* is divided by the stagnation point O**'. The flow on the
primary 9 ,-eddy side continues to the start of the next side ' but the flow on the other
D, ,-¢ddy side is mapped by the transformation (2.20) to the start of the side ' If we

consider only the flow in the channel regions up to the closed streamlines %%, the mapping
is

i |6 > E> AL _ THL g > >0
o=2 on J{A§>§>£i_oo} to o0=0 on {yi‘1:0>€>g$} (4.15)

(see also (A 2)), which is indicated schematically on figure 8. It is perhaps worth noting at this
point that the mapping from the end o = 2 of two opposite sides J*, 7 "** together map one
to one on to the start of the pair of opposite sides 7 "1, 7 1. The total £&-range involved in the
mapping is

(ET =)+ (" —£50) = 2[8+ (Lo — L w)] (4.16)
independent of the value of ; a result established from (4.13), (4.14).

4.2. The thermal problem

4.2.1. The solution of the heat conduction equation

For our slow mean flows with € of order R™# the heat source £ given by (3.2¢) is itself small
and given by

RE =1y 8x) = — 7 (11 X By).. (4.17)

To leading order it is negligible in the heat conduction equation (3.25), which in terms of the
boundary layer coordinates o, £ (see (3.39) and (4.3)), reduces to

04/00 = 0b/0§ (b =04/0) (4.18)
as in paper 2. On each side J° of the primary square 71, we set

A(0,8) = A'(0,8), b(0,§) = b'(0,§), (4.19)
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Ficure 8. Symbolic diagram showing o, £-axes for each side 7, i = 0, 1,2, 3, of the primary eddy 1. The symbol
|>—] indicates that data arriving from 7}, provides initial data for the next side J for £ > 0. The diagonal

connections ["""71 indicate that data arriving from J 1, provides initial data for the previous side J for
£<0.

where § is the shifted coordinate (4.8). According to (3.275), (3.37), (3.38) and (3.43) each
solution A satisfies the boundary conditions

oy { b(E—EL)+ 4, as £1 o0, (4.20a)
M7 —B(E—£)—A,+Ab as £ oo, (4.200)

where, by (3.265) and (4.17),
b=3n(ny 8u) = —§N (g X By),. (4.21)

At each of the X-type stagnation points diffusion is negligible and 4 passes unaltered from the
end of one side to the start of another. According to the mapping (4.15) and the transformation
property (3.4), the value of A" at the beginning (o = 0) of the side " is related to the values
of A'*" at the end (o = 2) of the sides 7 ‘*! by

i _ [ATH2E+ AT (£>0), (4.224)
A (O,g) _{Ai+1(2’€+AC'+1>_Abi+l+Abi (§<O), (4221))

where Ab' is given by (3.44). If, on the other hand, we consider the derivatives 4 instead they
are linked by

b(0,8) = Q8(&) + ' (2,E+ ALY (££>0), (4.23a)
where the d-function source proportional to
Q' = AN (2, AL) — A2, ALY + AbT — AbY (4.23b)

is determined by the jump in the value of 4°(0,§) across £ = 0.
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The solutions of the heat conduction equation (4.18), which we construct, involve the
elementary (similarity) solutions

Go(0,€) = $(0G, /) = (4na)Fe e, (4.240)
Gy(0,§) = (3G,/0E) = Exf(£/+/40), (4.24)
Gy(0,§) = EExf (£/v/40) + (4o /m)i et 107, (4.24¢)

which satisfies the initial conditions

Go(0,8) = 8(8), Gy(0,€) = sgng, G,(0,£) = Ig. (4.25)

The expressions (4.25) also give the asymptotic behaviour of Gy, G, G, as §—>+ 0. To
accommodate the boundary conditions (4.20) we seek solutions of (4.18) in the form

b, &) = b+ b, (4.264)
where b(o, &) = bG,. (4.26 b)

The remaining part b satisfies the heat conduction equation (4.18). Integration of (4.264) with
respect to £ shows that the boundary conditions (4.20) are met when

bo,£)>0 as E->+o0 (4.27)
and, with the use of (4.134),
Ii= J b(o,£) dE = —b(AL) — Ab' +24,. (4.284)
In view of (4.13¢) and (3.44) these integrals have the property
T 4171 = 44, (4.28b)

The mathematical problem for 4’ is completed by linking the end values 4*(2, £) with the start
values 6°(0,£). By (4.23) and (4.26) we have

b'(0,8) = Q'8(E) + by (0, 8), (4.294)

where Bl (0,8) = 6712, E+ ALFY +BGE (E+ALTY)  (££>0) (4.295)
is the regular part and

GE(&) = G,(2,8)F1. (4.29¢)

To determine Q' we integrate (4.29 a) over the complete range — 00 < § < 0. The contribution
from the last term in (4.295) proportional to b vanishes because of the symmetry

Gi(—E+AL™) = =G (E+AL™)

and we are left with

Q' = I'— (I 4 T, (4.304)
- o - A{i .
where Il = f b2, dE, T = J b'(2,£) dg (4.30b)
AL -0
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and Ii4+T =P, (4.30¢)

It is a simple matter to establish from these definitions that

Q' +Q" ' =0. (4.304)

Of greater relevance to the numerical solution is the fact that by use of (4.28) the value of
in (4.304) can be expressed, like 4%, (0, £), entirely in terms of results from the sides 7 *** alone.
There results

B(AL) — Ab* + (Tt — i1y — (T2 — 1)), (4.31)

Finally the Greens function solution on each side J* is

H(0,8) = @G0+ | Gulo 68 Bgl0,€) 08" (4:32)

When o = 2 it links again the start values 5*(0, £) with the end values (2, £).

The essential idea behind the numerical solution is to specify an initial guess of 4°(2, £) and
b*(2,£). By (4.31), these values define Q'(= — Q% see (4.30d)) and then with (4.29) they set
up initial data on Z* and 2. The terminal values 6'(2, £) and 5°(2, £) then follow from (4.32).
Again by (4.31), they define Q°(= — @?) and then with (4.29) they set up initial data on J°
and J2 The terminal values °(2,£) and $%(2,£) then follow from (4.32). The numerical
integrations are based on the values of l;ﬁeg(O, £) being defined on points §=j(Af,.m)
(j= integer). The end values 5(2,£) are evaluated at £ = j(AL,,.) + AL. Of course, for the
numerical integrations the range of definition of l;ﬁeg(O, §) is limited to &, < £ < &, (see (4.15))
as are the integrals (cf. (3.424) and (3.664)). This means that our total range on each pair of
sides 7" and 71 is 2[{°+ ({,, —{_.,)] (see (4.16)). In fact, we choose +§, , = 16. A Fortran
NAG-library equation solver routine was used to find that initial set of °(2, j(A£,,..) + A&)
and B%(2, j(Ayum) +AL),
operations described above. The results were used to set up the integrals I'. For each value of

which yielded the same set of values after processing by the

i, I' defines by (4.284) a value of 4,. Since all values so obtained should be the same, this
provides a useful check of our numerical procedures.

Numerical solutions were obtained for flows with rational tangents (see (4.5)) and the results
are illustrated in figures 9 and 10 for the cases listed in table 1. Those shown in figure 9 are
for B

gu = (AB) (_N>M)’ BH =

(AB) (M, N), (4.334, b)

TaBLE 1. CHANNEL DATA USED FOR NUMERICAL INTEGRATIONS IN FIGURES 9-12

(Each of the data corresponds to the cases a, b, ¢ and d shown on each set of figures. In the last row the values of
above and below A, and A¢,, listed correspond to the short (k odd) and the long (k even) channels D, respectively.)

O-flows, L-odd

(M’ N) Ag (”:v 771 ) ﬂ L A Ak Aged Agch Agnum i- 77;9;00 AB
0,1) 24 (0,24) 7.64 1 1 1 5.01 5.01 0.5 16.0 1.0
(1,2) 24 (24,48) 17.08 3 1 1 5.01 8.68 1.0 16.0 1.0
(1,6) 13.26 (13,80) 25.68 7 1 1 5.01 13.26 1.105 16.0 1.0

E-flows, L-even
) 0.5 3.55
(1,1) 24 (24,24) 10.80 2 0.75 1.5 5.01 6.14 0.75 16.0 1.0
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688 A.M.SOWARD AND S. CHILDRESS
which in the case of the magnetic problem corresponds to a mean magnetic field of magnitude
B, = (M*+ N?)3(AB) (4.33¢)

parallel to the mean motion. The asymptotic results of §5.2.2 below valid for large f§ (see
(3.18)) expressed in terms of our boundary layer variables yield the channel and eddy solution

) [Aen p'B, on D, (4.340)
“lo on D%, (4.34b)
(see (5.21)) with
Ay =34p7'B & (& = L(AD)) (4.34¢)
(see (5.22)), where, by (4.54) and (4.335),
BBy = n(ny- By)/Inul* = n(AB)/(AL), (4.34d)

and the constants 4, and A are defined by (2.49) and (2.51) above. The values of the eddy
constant A4, given by (4.34¢) are compared in table 2 with the computed values obtained from
the numerical integrations of the boundary layer problem. They differ by about 10 9%,. Similar
differences occur with the channel values of 4 given by (4.344) and the corresponding channel
values for the full numerical integration illustrated in figure 9. The discrepancy occurs because
of boundary layer corrections not included in (4.34). These are discussed in §6 below.

TABLE 2. PARALLEL FIELDS WITH CHANNEL DATA GIVEN IN TABLE 1, WHERE
BB, = n(AB)/(AL) (skE (4.34d))

(The values of the two quantities proportional to 4,,, for L-even are partitioned as in table 1.)

L-odd
(B, B,) numerical
(M, N) i ﬂ_lBu i ﬂ_an(Ag) %AﬂHBu & 4,
(0,1) 0.131 3.142 1.571 1.421
(1,2) 0.131 3.142 4.713 4.422
(1,6) 0.237 3.142 11.00 10.246
L-even
0.196 4.731
(1,1) 0,065 151 2.357 2.251

The results shown in figure 10 are for
gu= (AB)(—M,—N), By= (AB)(—N,M), (4.35a, b)
which in the case of the magnetic problem corresponds to a mean magnetic field of magnitude
B, = (M*+ N*3(AB) (4.35¢)

perpendicular to the mean motion. The asymptotic results of §5.2.3 below for large f yield the
channel and eddy solutions

b= (5:)((:;{2) on Dy, (4.360)
+b on D%, (4.36 )
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LARGE REYNOLDS NUMBER KINEMATIC DYNAMOS 689

(see (5.32)), where {i.1(= (k+3) (AL), see (4.6)) defines the streamline in the middle of the
channel D, and, by (4.5a), (4.21) and (4.356),

b= —n(M?+ N?%) (A) (AB). (4.36¢)

The numerical values of —b and the multiplicative factor 1/L4, in (4.36a) used to sketch the
asymptotic solutions shown in figure 10 are listed in table 3. The numerical results show good
agreement with the asymptotic formulas.

4.2.2. The mean heat flux

The determination of the mean heat flux F; from the formula (3.47) depends on the values
of the functions ' defined by (3.45). In terms of our boundary layer coordinates the functions
F' (see (3.42)), which define them, are

g

Fl =FL +F, (4.37a)

where, ignoring the remainder term proportional to A4, ,, which vanish as +¢, ,— o,

7= f: g9 | ds-+ L.+ 161, (4370)

.9«'3,%::“1 J: [ J: wgz?dg]ds, (4.37¢)

(see (4.26a)). The integral of G, in (4.37b) (see (4.26b)) is evaluated using (4.24) and gives

=2 [ e(uto, 1) oG, 0,01, . w.38)

In view of the asymptotic results (4.25) only the term proportional to o remains as
+ &, — 00. It yields the limit

Fi= 2b+gé (0—1)ds = 25. (4.394)

0

Since o —1 is antisymmetric about the midpoint s = 31 of each side J*. In the same limit, it is
readily established from the heat conduction equation that

J: £ dg

is constant on each side ' independent of o. Hence (4.37¢) yields the limit

- f ’ £t dg, (4.39b)
which we find convenient to evaluate from the numerical results at the end o = 2 of each side
J . Substitution of (4.39) into (3.47) gives the formula
HFoa—F ) =&, — Aoy, (4.404)

m HFy—F ) — 8, + A1, (4.406)
where Fl=F'+F. (4.40¢)

T 2

'11| al
1
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Ficure 9. For description see page 693.

To determine the diffusion-matrix D defined by (3.6), it is sufficient to calculate F for the
two cases of parallel and perpendicular mean magnetic fields (4.33) and (4.35) respectively. In
general, this matrix has few simple properties. Nevertheless, in the case rapid mean flows
il = el with rational tangents,

f > LHM*+ N?)} (4.41)
(see (3.18)), the analysis of §5.2 below shows that the diffusion-matrix has the asymptotic form
D = D, iy iy, (4.42a)

where, from (3.6) and (5.37),
€PRD, = 1®/48AL(M? + N?)E. (4.42b)

Since 4 is of order unity (see (2.51)), the quantity e *R™*D, tends to zero in the irrational limit
and we are no longer necessarily left with the asymptotic form (4.42q). To test the asymptotic
result (4.42) for rational tangents, we consider the case of perpendicular mean magnetic fields
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Ficure 9. For description see page 693.

(4.35), for which the mean temperature gradient g, is aligned with the mean motion, and use
the results of the numerical integrations to evaluate

Dmm = = (RiFyBu/Bul’) (8w = 2al8) (4.43)
from (4.40). In the limit #— 00, the numerical results obtained from (4.43) should agree with
the asymptotic result (4.425).

Numerical results for D™™ are presented in table 4 for low values of M and N in the two cases
lnxl (= nf) equal to 30 and 60. They are used to give interpolated values at f = o0 by use of
the formula (6.10) below. These agree well with the asymptotic result (4.425) when the sum
L (= M+ N) is small. The poorer agreement achieved at larger values of L can be explained
(see §6 below) by the stronger influence of the channel and eddy boundary layers. Finally the
values of (4.43), for the complete range 0 < M/N < 1, are plotted on figure 13 below for the

case |ip5| = 60. The asymptotic values (4.426) for the particular values of M/ N listed in table
4 below are also indicated for comparison.
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Ficure 9. For description see opposite.

4.3. The magnetic problem
4.3.1. The solution of the magnetic induction equation

Our solution of the thermal problem solves part of the magnetic problem and, in particular,
determines the horizontal magnetic field. It remains to solve the inhomogeneous heat
conduction equation (3.12) for the vertical component of magnetic field, KB. In terms of our
boundary layer coordinates its leading order approximation is

0B/do—*BJAC* = —0A /00 + (Hy- V) b. (4.44)

Just as (4.18) is the boundary layer extension of (3.20), so is (4.44) the boundary layer
extension of (3.49a). Furthermore, like (3.494), it can be recast in the form

08 /00— PR J0G* = —04 /00, (4.45q)
where B(0,8) = B+¢b(a,8)

(cf. (3.490)).

(4.45b)
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Ficure 9. The functions ¥ plotted solid against £ at the end (o = 2) of each side I of the primary square /7 for

parallel mean magnetic fields By,. The vertical broken lines identify the channel boundaries C,: £ = £, — . The
origin £ = 0 identifies the X-type stagnation point at the start of the side 7 while £ = A{' identifies the
X-type stagnation point O™*! at the end of the side. The plots of &' for the sides 7 at O** are taken in cyclic
order starting at the bottom right, with (iv) ¢ =0, (ii) ¢ =1, (i) ¢ =2, (iii) ¢ = 3, just as for the flow (see
figure 6). The location of the sequential points, identified in figures 34, 4a and 54, as mapped onto the primary
square 17, are labelled. The following cases are illustrated. O-flows: (a) A = 24, (M, N) = (0,1) = B; (b)
AL =24, (M,N)=(1,2) = By; (¢) AL =13.25, (M,N) = (1,6) = By. Only selected channel boundaries
marked, namely the start and end X-type stagnation points and eddy boundaries. E-flows: (d) A§ = 24,
(M,N)=(1,1) = B,.

TABLE 3. PERPENDICULAR FIELDS WITH CHANNEL DATA GIVEN IN TABLE 1, WHERE
b= —ln(M?+ N?) (AL) (AB) (sEE (4.36¢))

(The value of the quantity proportional to 4,,, for L-even is partitioned as in table 1.)

L-odd

L-even

(M, N) (B,,B,) —b (L4,)™ —b(Ag) 3L -3¢
(0,1) (—1,0) 9.426 1 226.2 1 113.1
(1,2) (—2,1) 47.13 1 1131 3 1697
(1,8) (—6,1) 192.7 L 2555 z 8943

1
(1,1) (—1,1) 18.85 1 452.4 1 452.4
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Ficure 10. For description see page 697.

On each side J* of the primary square [1, the stretched streamfunction { (= {(0)) is a
function of ¢, which varies in value from

§o)=¢ t &2 =g (4.46)
between the beginning and end of the side. Solutions are sought in the form
B =RB(0,8) = (§'+3£) b (0,8)+C(0,8). (4.47a)

The first term, (§+3£) b, is a particular integral of (4.454) and so C' is a solution of the
homogeneous heat conduction equation

AC! /o0 = B2C' /o2, (4.475)
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Ficure 10. For description see page 697.

According to (4.474), (4.456) and (4.46) the beginning and end values of B (= B'(c,§)) are
B'(0,8) = 3£b'(0,&) +C*(0, §), (4.48a)
B'(2,£) = G£—AL) b'(2,£) + C'(2,8) (4.48b)

(see (4.104)). The start value (4.48a), as in paper 1, provides the motivation for the
representation (4.47a). For whereas both B and 4 can suffer discontinuities across § = 0 at
o = 0, the d-function contribution to B from 4* at ¢ = 0 is unacceptable and is eliminated by the
coefficient £ of 4°(0, £) in (4.484a). As a result the solution C* of (4.47 4), like B¢, has no d-function
source at o = 0.

On each side J° the result (3.56) with (4.13f) shows that %' approaches 1¢*b+ B,
as £t o0 on the primary g ,-eddy. On the neighbouring 2, ,-eddies, %' approaches
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Ficure 10. For description see opposite.
TABLE 4. CHANNEL DATA AND THE VALUES OF € °R™'D,
N (The Ag,, values for L-even are partitioned as in table 1.)
4 L-odd asymptotic
z ] = 30 _ 1] = 60 _ |1y > 00 value
= P (M, N) Ag,, Ag Dmm Ag Drm D} € BR7D,
@) = (0,1) 5.0 30.0 0.728 60.0 0.685 0.642 0.646
= (1,2 8.7 13.4 0.254 26.8 0.170 0.086 0.096
e
o (2,3) 11.2 8.3 0.248 16.6 0.134 0.020 0.036
=0 (1,4) 11.2 7.3 0.253 14.6 0.130 0.006 0.031
L @) (3,4) 13.3 6.0 0.246 12.0 0.129 0.013 0.018
=w (2,5) 13.3 5.6 0.259 11.1 0.129 —0.001 0.017
—n (1,6) 13.3 4.9 0.269 9.9 0.126 —-0.016 0.015
<
Eé L-even 25
EE i (1,1) 6.1 21.2 0.509 424 0.404 0.299 0.305
O .
g © 6.1
9 Z (1,3) 9 9.5 0.281 19.0 0.162 0.043 0.054
T3 '
o= 7.9
(1,5) 5.9 0.265 11.8 0.137 0.008 0.022

9.4
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40 0 —40 40 0 —40

Ficure 10. The function 4’ plotted solid against £ at the end (o = 2) of each side I of the primary square I7 for

perpendicular mean magnetic fields By,. Taken in cyclic order starting at the bottom right they are (iv)
i=0, (ii) =1, (i) {=2, (iii) { = 3. The broken lines are given by the asymptotic results (4.36). Other
details are similar to figure 9 and the following cases are illustrated. O-flows: (a) A = 24, (M, N) = (0, 1),
B, = (—1,0); (b)) AL =24, (M, N)=(1,2), By = (—=2,1); (c) A, = 13.25, (M, N) = (1,6), B, = (—6,1).
E-flows: A{ =24, (M,N) = (1,1), By = (—1,1).

—fm%’,ﬁ% b—Byas§| —o0. From (4.4) and (4.12) it is readily established that, on the side
this limit becomes — (3¢ —A{*') b— B,. Further use of (4.13d) and (4.104) shows that the
boundary conditions on #* take the form

B' >+ [§+3AT—ALT )b+ B, as +£41 o, (4.494)

where the upper and lower signs correspond to £4 o0 and £ — o0 respectively. Consequently
we thus have from (4.47a) that the asymptotic behaviour of C? is

C'> 3 —E+AL— AT b+ B, as +£4 0. (4.495)

At the end of each side, B is carried to the start of another unaltered by diffusion. So, just as
for 4 and b in §4.2.1, the initial value of B at the start of the side 7 ¢ is related to end values
by
B'(0,8) = B (2, £+ AL'FY)  (+£>0), (4.504)
49 Vol. 331. A
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Ficure 11. For description see page 701.

where the upper and lower signs correspond £ > 0 and £ < 0 respectively. Use of (4.48) shows
that the corresponding result for C is

C'(0,8) = C'FM2,E+ALTY) —(ALF) B'FH(2,E+ALTY)  (££>0). (4.506)

We express the solution of the heat conduction equation (4.475) in the form
C'(0,§) = C'(0,£)+ C(0, §), (4.51a)
where Cl(c, £) = — 156G, + [26(AL)) + B,] G, +15(ALH) (4.51b)

is constructed from the elementary solutions (4.24) so that the boundary condition (4.495) is
satisfied. By this device the remaining part C* satisfies the heat conduction equation (4.47)
with the boundary condition

Ci(o,€) >0 as =+£100. (4.52)
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Ficure 11. For description see page 701.

The initial condition on C* at the beginning of each side ¢ follows from (4.504) and (4.51).
With the help of (4.24), (4.26) it reduces to :
C'(0,8) = CTF1(2, 6+ ALT!) —HALT F'F1(2, £+ ALTY)

— 3G (E+ALT) + B GF(E+ALT)  (££>0), (4.53a)
where G (8) = G,(2,8) F¢& (4.535)
and G (§) is defined by (4.29¢) above. Finally the Greens function solution on each side
T s

Cio§) = | Goob-£) G106 dt (454)

When o = 2 it links the start value C*(0,£) to the end value C*(2,£).

49-2
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Ficure 11. For description see opposite.

The mathematical problem posed by (4.53) and (4.54) for C* is similar to that for A°
formulated in §4.2.1. In the numerical procedures, however, there is one difference. Whereas
the iteration for 5(2,£) could proceed on the basis of an initial guess of 6°(2,£) and b*(2,£)
alone, here the iteration for C*(2, £) requires an initial guess of B, in addition to C°(2,£) and
C?(2,£). Otherwise the procedures are the same.

Numerical results are illustrated in figures 11 and 12 for the cases listed in table 1. In the case
of parallel mean magnetic fields (see (4.33)), the asymptotic results of §5.3.2 below for large
B yields the channel and eddy solutions

B=(Ak+113—lB||<€_€> on Dy, (4.554a)
10 on 95, (4.55b)

(see (5.53)) for the vertical magnetic field, KB, where #7'B, is defined by (4.34d) above. The
data used to produce the asymptotic solutions illustrated in figure 11 is listed in table 2. Note
that, in each figure, B on the side 7 is plotted at the end O**! (o = 2) at which {—{ = £—A{'.
Consequently the asymptotic value of B defined by (4.554) vanishes at £ = A{’. Just as in figure
9 before, the slope of the numerical solutions differ from those defined by (4.554) by about
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Ficure 11. As in figure 9 except that Bt is plotted against &.

10 %,. Note also that for O-flows 4, is unity and (4.55a) defines a straight line. For E-flows 4,
alternates in value between one channel and the next. The resulting change in slope of B is
illustrated well by figure 114, just as the change in magnitude of 4 is clearly shown in figure
9d.

In the case of perpendicular mean magnetic fields (see (4.35)) the asymptotic results of
§5.3.3 below for large £ yield the channel and eddy solutions

. (Lil){(é—é)z— <§,Z%~§> <€k—§_>} on D, (4.560)

+b(¢t -0 on 9%, (4.56b)

(see (5.63)) with B =—1bte (& = L(AY)) (4.57a)
(see (5.64)) and t L =Ryt (4.57b)

The expression (4.56 b) gives the values achieved on the boundaries %;, , = C,,, and €, , =
C, as they are approached from the eddy interiors. The data used to produce the results
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Ficure 12. For description see page 705.

illustrated in figure 12 are listed in table 3. Note that the stagnation point at O™*'(¢ = 2) on
the side I is located at £ = AL, on the streamline C, (say). There {—{ vanishes, as do {,—¢
and ¢, — {in the channels D, and D,_, respectively above and below the dividing streamline
C,. Consequently B is continuous across the dividing streamline C, at the stagnation point,
where it takes the value B®. Finally we note that the agreement between the numerical and
asymptotic results displayed in figure 12 is good despite complexity of the channel structure.
The smoothing effect of diffusivity accounts for the disparity in the more complex cases.

4.3.2. The mean electromotive force

The determination of the mean electromotive force KEy; from the formula (3.65) depends
on the values of the functions &* defined by (3.67). On each side J ' the integrand in (3.66a)
is given by

& = Riyb— B = }b'(a,£)— C'(a, £), (4.58)


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

/%

Y

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

s\

SOCIETY

SOCIETY

p

OF

S A

OF

Downloaded from rsta.royalsocietypublishing.org

LARGE REYNOLDS NUMBER KINEMATIC DYNAMOS 703
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Ficure 12. For description see page 705.

where use has been made of (4.3), (4.8) and (4.474). With ' and C* expressed in the forms
(4.26) and (4.51) the functions é”f)os (see (3.664)), from which & are derived, are given by

&, =&, +8&.,, (4.594)
. 1 o . .
where &, = Ef[fi (36— CY dg]ds— (&, —8%,), (4.596)
olJeg
. 1 e o A
&, = —f[f (3eb'—CY) dg] ds, (4.59¢)
foMJolJe
and, by use of (4.13¢),
6o =L [3(Ey o, — AL —AL*Y) — By] £, (4.59d)
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Ficure 12. For description see opposite.

Substitution of (4.264), (4.515) into (4.595) and use of (4.24) yields

& =1 f " (= AG) F— By} Gyl £) — ENIE ds.

(4.600)
TJo

In view of the asymptotic behaviour of G, defined by (4.25), this expression vanishes in the limit
+ &, — oo giving

(4.60b)
It follows at once that

si=i= | er-cyag (4.61)
which, as for # defined by (4.394) above, we find convenient to evaluate from our numerical
results at ¢ = 2. To complete the evaluation of the mean electromotive force KEy; defined by

(3.69) we require
8 = £ [B(—EL £ L)~ By £ (4.62)
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Ficure 12. As in figure 10 except that B’ is plotted against £.

(see (3.66b)). Hence substitution of (4.62) into (3.65), (3.67), (3.68) and use of (4.12),
(4.13a, ¢) recovers the result (3.69), namely

MRE, = —4(8,— 83) + By, (4.630)
nRE, = L(8— &)+ By, (4.630)

where & are now determined from (4.61).

As in the case of the diffusion-matrix considered in §4.2.2, we determine the a-matrix « in
(3.14) by considering the value of Ey defined by (4.63) for the two cases of parallel and
perpendicular mean magnetic fields in the limit (4.41) of large f. The analysis of §5.3 below
shows that the a-matrix has the asymptotic form

—o = oy(I—lyly), (4.64q)

4 s nL 1\
where from (5.68) K¢ 3R 'a, = 16(M2+N2)%(1_3/1L2)' (4.64b)
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For mean flows with irrational tangents, (4.645) yields
K7€ R7ay" = $gm®(|d,| +d,|) = gisnsin (6, +3m) (4.64¢)

in the limit L - 00. Consequently we see that for mean flows with rational tangents D, (see
(4.42b)) and o are related by

Klay+D, = K™l (4.65)

To test the asymptotic results (4.645) for rational tangents, we again consider the case of
perpendicular mean magnetic fields (4.35), and use the results of the numerical integrations to
evaluate

K7'g™™ = — B3(RAE,;+ By /|Byl?) (- By = 0) (4.66)

from (3.69). In the limit #— 00, the numerical values for &™™ should agree with the asymptotic
result (4.64 ). Numerical results corresponding to those obtained for the heat flux calculations
of §4.2 are presented in tabular form in table 5 below and graphically in figure 14 below.

TaBLE 5. THE vaLuEs oF K ¢ ?R ',

L-odd asymptotic irrational
[yl = 30 7, = 60 || = 0 value asymptotic value
(M, N) K-1&num K—l&num K—l&'g K—le~3Ra0 K—le—aRa:)rr

(0,1) 1.255 1.273 1.291 1.292 1.938
(1,2) 2.436 2.469 2.502 2.503 2.600
(2,3) 2.549 2.608 2.667 2.652 2.687
(1,4) 2.243 2.272 2.302 2.319 2.350
(3,4) 2.593 2.640 2.687 2.694 2.712
(2,5) 2.387 2.455 2.522 2.502 2.520
(1,6) 2.102 2.168 2.234 2.215 2.230

L-even
(1,1) 2.339 2.387 2.435 2.436 2.740
(1,3) 2.300 2.346 2.391 2.397 2.452
(1,5) 2.150 2.202 2.254 2.259 2.281

5. THE CHANNEL SOLUTIONS
5.1. Scope and objectives

In this section we only consider mean flows with rational tangents for which
(€RP=)B> [} M*4+N%}, R>1>e (5.1)

Diffusive effects are confined to eddy and channel boundary layers so that mainstream
solutions exist inside the channels D, as well as in the interior of the eddies 2% ,. Here we
construct these solutions and use them to determine the dominant contributions (4.42) and
(4.64) to the diffusion and a-matrices as advocated in §3.3 above.

The method that we use is explained in paper 2, §3.1. Essentially we obtain consistency
conditions as in §§3.4.1 and 3.5.1 above. However, whereas for the eddy solutions we
considered closed domains 2 (i) bounded by closed streamlines € (), we now consider the
closed domain 8D(y) bounded by two neighbouring streamlines C() and C(y+ 8y) taken
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over a periodicity section, Fy P, (see (2.314) and (2.16)). Both C(¢) and C(¥ + &%) lie in the
interior of the same channel D, and the boundary of 8D(y) s completed by arcs, Co, CPs,
connecting C(¥) to C(¥r +8yr) at each end of the periodicity section. Just as we did for the eddy
solutions, we assume that 4 and B are given by (3.21) and (3.494), (3.50), where to leading
order A and # are functions of ¥ alone. To determine those functions we integrate the heat
conduction equations (3.26) and (3.124) over the domain 8D(¢). The differential equations
(56.3) and (5.38) below governing 4 and % respectively are the consistency conditions obtained
in the limit 8y - 0.

Some boundary conditions at the channel edges can be derived in a similar way. We consider
the closed domain 8D, bounded on either side by the streamlines C(yr) and C(y + 8¢) in the
two distinct channels D,_, and D, on either side of the dividing streamline C,. Taken over a
periodicity section the domain contains, in addition to the streamline Cy, either a single 2 -
eddy for E-flows or both a &}, , and a 2, ,-eddy for O-flows (see §2.3). The particular case
CY) = D_ (¢ <0) and C(y+06y) = Dy(y > 0) is illustrated in figure 2. Again the heat
conduction equations (3.25) and (3.124) are integrated over 8D, and two boundary conditions,
one (5.11) for 4 and the other (5.43) for %, are obtained in the limit 8 - 0. Unlike 8D (y),
which has zero area in this limit, the region 8D, continues to include the eddy interiors of finite
area (see (5.10) below). Not all boundary conditions can be obtained in this way. The complete
solution to the mainstream problem requires matching the eddy and channel boundary layers.
As mentioned in §3.4.1, such matching was achieved to all orders of inverse powers of R in
paper 2 by constructing the boundary layer solutions using the Weiner—-Hopf method. This
powerful method is not available to us here and so we do not attempt to solve the boundary-
layer problem in detail. When we consider the two particular cases of parallel and
perpendicular fields (see (4.33) and (4.35) above), we make use of the limited information
available to construct the lowest order mainstream solutions compatible with boundary layers.
Using the language of the magnetic problem, it is the latter case of perpendicular field p, which
is the more interesting. Just as for the cat’s-eye problem of paper 2, and as explained in §1
above, the magnetic field is stretched out and intensified by an order of magnitude in the
channels. This gives the dominant contributions (4.42) and (4.64) to the diffusion and a-
matrices. In the former case of parallel fields, magnetic flux is simply expelled from the closed
eddies and aligns itself with the channel flow giving negligible contributions to the mean heat
flux (3.6) and mean electromotive force (3.14).

The approach presented in this section is based upon the detailed channel geometry of §2
and is thus in the spirit of the boundary-layer analysis of §4. However, for the specific purpose
of obtaining the dominant mainstream channel solution, other approaches of a more algebraic
nature are possible. For example, the increments or shifts Ay in ¥ given by (2.43) and utilized
in (4.11)—(4.13) can be represented by a shift map mod ¥ on the real line. The properties of
this map can be used to deduce the values of the circulation integrals (2.48) needed in the
asymptotic evaluation of transport. Since such alternative approaches might be useful for other
examples with mean flow, we outline this approach to the computation of the mainstream
contributions to D in Appendix A.
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5.2. The thermal problem
5.2.1. The mainstream solution

At leading order we assume that both 4 and R (= 04/0y) are functions of ¥ alone as in
(3.21) and (3.235) above. Integration of the heat conduction equation (3.2) over our channel
periodicity domain 8D () yields, upon application of the divergence theorem,

[4]52 8y — ESX = R:5(yb), (5.2q)

where 82 is the area of 8D (y), v is the circulation integral (2.31a) (cf. (3.245)), [A],’iﬁ denotes
the jump in value of 4 between the terminal arcs C and C”s, and

8(yb) = y(Y+39) b(¥ +8Y) =y (¥) b(¥). (5.25)

In the limit 63 — 0, the consistency condition (5.2a) becomes

_dX v d
Py — =2 5
(A1 = B+ R ), (530
dE [Pl dy (Pst
in which —=| =ds, =—4-=]| =-V¥%ds 5.3b
= o™ =Y (5:36)

(cf. (3.255b), but note that d2' is of opposite sign). Now within the framework of our small-¢
approximation the derivative of y is negligible in comparison with that of 5. We therefore
assume it to be a constant, which according to (2.48) is given by

[0 =y =T, = (8/7)4,L, (5.4)

where o is the streamline coordinate (3.39). We then define the mean o-derivative of 4 on the
channel D, by

(2—;1),6 = 7“1—,; [A]zlio“, (5.5a)

where, by (2.16) and (3.4),
[A]p2 = (2/7) Ay n- (5.5b)
The value of E, on the other hand, is determined by (2.10), (3.1) and (3.2¢) and is given by
E =1"%(Ay) Ay x = Ofe). (5.6)

Since d2'/dy is of order unity, it follows from (5.55) and (5.6) that £(dX/dy) is smaller than
[A]ﬁ;A by a factor of order ¢ and so can be neglected. Within the framework of our
approximations, (5.3a) now reduces to

db/dy = R¥(34/d5), on D, (5.7a)
where, by (5.4)-(5.6),
(5) =t =Ly, (5.70)
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Integration of (5.74) yields

b= R:(J4[00), (Y — ) +R35, on D, (5.84a)

where Vi = (k+3) (AY) = 3(¥+ ¥ier), (5.80)

and the constant R7#b, are the mean values of ¥ and b respectively across the channel. Further
integration of (5.8a) yields

A= (04/30), [ZRW —¥) ¥ — Y1) o]+ b, (Y — ¢k+§) + const. (5.9)

Here we have included the secular term proportional to o, which is formally small compared
with the term R(Y —¥,) (Y —,,,) in our large B limit (5.1). The corresponding eddy solutions
are given by (3.275).

Now we integrate the heat conduction equation (3.2) over the boundary periodicity domain
8D, to obtain (5.2a) as before. Now, however, we have

82—~ (2/T)n® as &Y —0, (5.10)
which is the area of one (7 =2, E-flows) or two (7 =1, O-flows) 2% ,-eddies inside 8D,.
Consequently, in this limit, the consistency condition (5.24) yields the jump condition

[y6] = lim (yb) — lim (yb) = — (2/7) RE across C,. (5.11)
Yivg AN

Substitution of (5.84) into (5.11) and use of (5.54) yields
ryb,=r, b, (5.12a)
According to (5.4) and (2.48), this relation is satisfied when

by = d,,, 5", (5.12b)

where 6™ is as yet an unknown constant that defines the mean value of 4, on two adjacent
channels;

B = 3+ bpan)- (5.12¢)

The determination of 4" and the remaining constant in (5.9) requires more detailed
information about the channel boundary layers. Some simple properties are noted in our
consideration of the two particular cases of parallel and perpendicular fields in the following
two sections.

5.2.2. Parallel fields

When the mean field By, is aligned to the mean flow @, (see (4.33)), it follows from (3.4)
that

4, ,=€"'B(—mN+aM) (Ay) (56.13)
and, in particular, that 4,, y vanishes. In addition (5.6) and (5.7) show that
E=0, (04/%0),=0. (5.144a, b)

Since there is no secular increase of 4 down the channel, the term proportional to (04/0¢), in
(56.9) is lost. As a result it is possible to demand that 4 be continuous across all channel and


http://rsta.royalsocietypublishing.org/

A
A

4
{

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA

¥y L
s \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

710 A.M.SOWARD AND S. CHILDRESS

eddy boundaries, thus fixing the unknown constant in (5.9). Continuity across channel
boundaries is met when

A=Ay B (=) + (k+3) 5" (AY) + A4 on D, (5.15)

where 4™ is a constant independent of £. The result (5.15) is established by noting that, when
applied to two neighbouring channels D, and D,_,, it yields the same result

A=[k—L1—4,)]5"(Ay)+ A" on C,, (5.16)

in both the limits ¢ | ¢, and ¥ 1 ¢,. In the case of O-flows, for which 4, is unity, this result is
obvious. On the other hand, in the case of E-flows we make use of the property (2.50) of 4,.
It implies that

—3(1—4,) =+3(1—4,) on €%, (56.17a)
since, by (2.304a), £ is odd and even on %;, , and %, ,-eddy boundaries respectively and, by
(2.11), (2.27), takes the values

k= (n+3) M—(m+3) Nt3L on %% .. (5.17b)
Since E vanishes, so does b defined by (3.264). More specifically it implies by (3.244) that
b vanishes in the interior of the closed eddies. There 4 is constant and takes the value
A=Ay utdy on DE . (5.18)
From (5.13) and (5.16)—(5.18), continuity of 4 across eddy boundaries yields
([(n+3) M— (m+3) NTIL+1— 4]} 8 (Ay) + 4™
=[(n+3) M—(m+3) N]e'B(Ay)+4, on %%, (5.19)
This result holds on all 2% ,-eddies when
M =¢1B, AM =0, (56.204a, b)
Ay =347 By (Y = L(AY)) (5:20¢)

(see (2.49) and (2.51)).

As the channel and eddy solutions (5.15) and (5.18) are continuous across all boundaries
when the constants 6™, 4™ and A, are given by (5.20), we are not obliged to consider the é-
function sources of b triggered at the X-type stagnation points. These sources were incorporated
in the general boundary layer formulation of §4 above. Nevertheless to the lowest order of
approximation attempted here, we see that they are negligible for the special case of parallel
fields discussed in this section.

The picture which emerges is as follows. From the thermal point of view the closed eddies
are isothermal with temperature given by (5.18). On the other hand, from the magnetic point
of view, flux is expelled from the eddies and concentrated in the channel regions. Specifically
the yr-derivatives of (5.15) and (5.18) yield using more primitive variables,

B, 04  [Aen(@x By/l#gl") on D, (5.21a)
Un By _ 04
ul® 20 on Pt (5.21b)
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where _ _
B, = tay,. (56.21¢)

The remaining constant 4, in (5.20¢) is given by
4y = %A'/’C(EHB—H/IEHF) (5.22)

Finally we note that by (3.11) the thermal and magnetic problems are related by

(#y X 8y), = Uy~ By. (5.23)

We finish the section by using our results to calculate the fluxes F? defined by (3.36), which
determine the mean heat flux F; defined by (3.46). Since 4 is constant in the interior of the
eddies and, furthermore, because we are ignoring the boundary layer contributions, it is not
necessary to take the formal limit -I_-Rézﬁiw» o0 in (3.46). Instead we taken our integrations
in (3.36) only up to the eddy boundaries and set ¢, , = 0. With (3.37) and (3.38) this yields

nFi = ﬁ CAdy— 1AL+ ) (Y + Ay, (5.24)
vt

With 4 given by (5.15) and (5.20) the contribution to the inte‘éral for each channel section D,
is

[ aaw = ey prapy (525)
Vi
and so the complete integral is

W - |

[ ady =S @by = kT - oy (5.26

Since equations (2.37)—(2.41) imply that
(K, —kL) (Ay) = Yl —yt = yo+ Ay (5.274)
and since (3.38), (5.13) and (5.204) yield
(K + kL) B (Ay) = A + A, (5.27b)
it follows that each of the fluxes (5.24) vanish;

Fi=0. (5.284)

S

So to the order of accuracy attempted here there is no mean heat flux,

E;=0. (5.285)
Smaller non-zero contributions to F; are only encountered when the boundary-layer effects are
included. Since the isotherms (or magnetic field lines) are almost aligned with the flow, the
result is not particularly surprising and is in accord with the earlier results of paper 2 for the
cat’s-eye flow.
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5.2.3. Perpendicular fields

When the mean field By is directed normal to the mean flow @ (see (4.35)), it follows from
(3.4) that

A, ,=—€"'B (mM+nN) (Ay). (5.29)

m

Substitution into (5.6) and (5.76) yields

2 241
F=cep, () —opel N
k

= A B (5.304, b)

Since (04/0a), is of order unity, the leading order R term of (5.9) dominates the channel
solution. We ignore the higher-order terms, which depend on boundary-layer corrections, and
so obtain the channel solutions,

A = (04/00), [FRI =) (b —¥ri) + (0—0)] on D, (5.314a)

where o, is a constant. To the same order of accuracy the eddy solutions (3.275) close to the
boundary are

A= £ R =y )+ Ay o0 G (5.315)
where, from (3.264) and (5.304),
b=—in*pB (6.31¢)

in which g (= eRY) is large (see (5.1)). In both (5.31a) and (5.314), we have retained the
formally small secular contributions. When they are neglected we see that the dominant order
B terms vanish at (and therefore continuous across) all channel and eddy boundaries. When,
on the other hand, the secular terms in (5.31a) are included, it is clear that continuity of 4 must
be abandoned and d-function sources of 4 are triggered at the X-type stagnation points.

As in the previous section we recast the results (5.31a, 4) in terms of primitive variables.
They become

ug B, 04 — 3R (@, x By), (¢—¢k+%)/dk y¢ on Dy, (5.324)
Tl o )
H v FLRn2(ay x By), on D%, (5.32)
where for the thermal problem
E =y gy = — (g X By),. (5.33)
Finally we compute the heat fluxes from (3.36), which at lowest order reduce to

v
nFl = f CAdy. (5.34a)

yl

Each channel contribution to the integral obtained from (5.314), with the term proportional
to (o —o,) ignored, is

f " A dy = — LREATSS), (A (5.345)

Vi
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Since (04/00), alternates in value from one channel to the next, it is simplest to evaluate the
two components of (3.46) directly. They are given by

Ly (Fit — Fit) =% ﬁ  Ady, (5.354)
yo

because the upper limits ¢/**! of the two separate integrals Fi*' are identical. Furthermore
since the y-range of integration in (5.354) is 2(Ay) (see (2.45¢)) it includes an even number
of channels. Consequently with (5.344), equation (5.354) reduces to

i -y == ()" (a2 ag) (5.350)
where (%)M %[(%)kJr(%)kﬂ] G2 u 1Y (5.350)

is the mean value of (04/0c), over two neighbouring channels (see also Appendix A,
particularly (A 1)). Finally with : =1 and 2, (5.35) gives

F,=— 11213(2;4) (AY)? @ty = Re® ( 4;)Zl<74‘lfﬁZ“)BL(M’ N). (5.36)

The result (5.36) always yields the dominant contribution to F;, whatever the orientation
of By, except for the special case in which it is aligned to @. In that case, as we have shown
in the previous section, F; reduces to boundary-layer contributions. So, for the general case,
(5.36) yields the result

F, = —R( )(A'”L:)nﬂ(n B) (5.37)

for the heat flux which, in turn, gives the asymptotic result (4.42) above for the diffusion-
matrix, D.

5.3. The magnetic problem
5.3.1. The mainstream solution

At leading order the mainstream problem for the vertical magnetic field, KB, is (3.49), as
formulated for the eddy solution. Thus B is given by (3.495) in which # continues to be a
function of ¥ alone. We now follow the development of the thermal problem in §5.2.1. We,
therefore, begin by integrating the inhomogeneous heat conduction equation (3.12) over our
channel periodicity domain 3D (y) and proceed to the limit 6y — 0. The result is

[4]5s = dc;[ JCW)-{MJFR--(WM Vi) b}ds]+R‘ ‘;( df). (5.38)

Its derivation is similar to the eddy argument which proceeds via equations (3.52), (3.53) to
the result (3.54). The conspicuously new terms are [A]72 on the left and the term involving vy
on the right. The former emerges from the term, —uy VA, in (3.125), while the latter arises
from the final integral in (3.53). In the eddy case neither gives a contribution. Since the jump

50 Vol. 331. A
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[A]ﬁﬁ over a periodicity interval is constant independent of i, differentiation of (5.34) yields
the result
d [J o d ( db
0=— —{E+R V2 b} ds] ( (6.39)
@ Jeyyg TV ay\Vay)

If we now restrict attention to a channel D,, it is convenient to multiply (5.39) by ¢, and
subtract the result from (5.38). This yields

oL 3 N g d (4%,

1t = | [ =) B+ R =) (V) =95 Tpa s R G (),
(5.404)

where B(Y) = B—Ror, 1 b. (5.40b)

By this device the multiplicative factors 1,5—1,0,”% and Vi, both of order ¢, ensure that the
derivative of the C(i)-integral on the right of (5.404) is of order € in comparison with [A]f;ﬁ
on the left, the latter turn being of order unity. (See, for example, the solutions for
perpendicular fields in §5.2.3, which render the C(i/)-integral of order ¢*. Differentiation with
respect to ¥ only increases its magnitude by a factor of order ¢7'.) With this term dropped
(5.404a) is readily integrated twice giving

B, = 3R(04/00), (Y — ¢k+2 )2+ S — ¢k+ +h, on D, (5.41)

where f, and £, are as yet unknown constants. To determine the mean electromotive force it
is necessary to evaluate & defined by (3.585). Use of (5.404) yields the alternative formula

=R~y 1)b—%B, on D, (5.424)
which with (5.84) and (5.41) gives
& =3R(04/00), (Y —¥1)*+ (0 —fi) (¥ —VYri) =l on Dy (5.42b)

We now integrate (3.12) over the boundary periodicity domain 8D, and proceed to the limit
Oy — 0. It leads to the differential form of (5.38), for which the left hand side is [A]ﬁﬁdzﬁ and
where the differentials denote jumps in values. With the jump in the C(y)-integral neglected,
as above, we obtain the result,

[yd#/dylt =0 across C,, (5.43)

which corresponds to our earlier thermal result (5.11). From (5.8) and (5.41) is readily shown
that

d4#/dy = R(0AJ5),y+f, on D,. (5.44)

Since (5.5a) says that I',(04/00), is the same for all channels and since i is continuous across
C,, the jump condition (5.43) is satisfied when

IAWAED Py e (5.454)
Like (5.124) before it is met by
Je = e S™, (5.45b)

where /™ is some constant taking the same value on all channels.
The jump in the value of 4 across a channel boundary C, includes a d-function source of b
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at the X-type stagnation points. No such source is present in B and this is guaranteed only when
% — R, b has no é-function source. This observation was the basis of the representation
(4.47a) of the boundary layer solutions on the sides J° of the primary square. The
representation (4.47a) can also be used as the starting point of an investigation of channel
boundary layers. Hence the heat conduction equation (4.475) must be solved subject to the
matching condition as R%(zﬁ—gbk) >+ o0, that B— Ry, b is proportional to Ry —r,) plus a
constant, whose value in the two neighbouring channels D,_; and D, differs by at most an
order one amount. Since this difference is an order R™# smaller than the dominant part which
increases linearly with R%(zﬁ—z/rk), it may be ignored at lowest order and yields the jump
condition, which is most conveniently expressed in terms of & defined by (4.58), namely

(Co (5.464)

(6] = —[B—R, bl =0 across
lez . (5.460)

Here we have noted that, unlike the other jump conditions (5.11) and (5.43) which only hold
across channel boundaries, this new result is also applicable to eddy boundaries.

In the following two sections we use (5.46) to find the lowest order solutions for the cases of
parallel and perpendicular fields separately.

5.3.2. Parallel fields

When the magnetic field By is parallel to @Iy, the horizontal part of the magnetic field is
given by the solution to the thermal problem presented in §5.2.2. In particular there is no
horizontal magnetic field in the eddies (b = 0) and there is no secular increase of 4 down the
channels. The jump condition (5.464) implies that & defined by (5.424) takes the same value
on the channel boundary C, when evaluated on D, and D,_,. With (5.124) and (5.455%) it
yields

_ — A (B =" (AY) =k, as Yy,
¢ —{ A, (M — ™) (AY) —h,_,  as Mm} on C, (5.47a)
and so, by (2.50),
(M=) (AY) = hy—yy. (5.470)

For O-flows all channels are the same. Hence #, is independent of k£ with the consequence that
/™ = b™. For E-flows, &, alternates its value from one channel to the next so that the difference
h,—h,_, is proportional to (—1)¥. This only compatible with (5.474) for all channels when

M= h,=h" (say). (5.48)
Together, (5.47) and (5.48) show that & takes the same constant value
&=—™ on C, (5.49a)

i.e. on all channel boundaries. When in addition we apply (5.464) to eddy boundaries, the
results (3.56) show that

&=—"=FB, on %%, (5.490b)
Clearly this can only hold for both €, , and %, ,-boundaries when
B,=0, ™=0. (5.50)

50-2
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716 A.M.SOWARD AND S. CHILDRESS
The results (5.48) and (5.50) then show that %,, given by (5.41), is

Bo= Ay B — 1) = R —e) b, (5.51)
by (5.15). It follows from (5.404) and (3.496) that
B =Ruyb, B=R(y—y)b (5.52a, b)
everywhere inside the channel regions. In terms of primitive variables, our results are
 [Aes(g- By/l@®) (p— ) on D, (5.534)
_10 on 9 . (5.53b)

Furthermore the channel value of & defined by (5.425) vanishes as does the eddy value by
(3.565). Since & vanishes everywhere so does the horizontal electric field E}; defined by
(3.584a). An obvious consequence is that there is no mean horizontal electromotive force,

KE, =0, (5.54)

a result which is completely analogous to the thermal result (5.284). Again, as in that problem,
the small non-zero contributions to Ey; only emerge at higher order, when the boundary layers
corrections are incorporated.

5.3.3. Perpendicular fields

When the mean magnetic field By, is perpendicular to @Iy, the horizontal part of the magnetic
field is given by the solution to the thermal problem presented in §5.2.3. The lowest-order
approximation to be determined from (5.31a) is

RMOAJ00), (f — ) on D, (5.55)

while to the same order of accuracy & is given by (5.425) with b, = 0. Consequently continuity
of & across the channel boundary C, yields with (5.455) the result

_ [(SROAT0), (M) 434 (AP = as L,
= (AT (e s ey e i) o G (36

and so, by (2.50),
M(AY) = [hy—3(04/00), (AY)*] — [k, —3R(04/00),_, (Ay)*]. (5.565)
Using the argument following (5.475) we obtain
SM =0, h,=3iR(04]00),(AY)*+ B, (5.57)

where B® is a constant independent of k. Together (5.56a) and (5.57) show that & takes the
same constant value

&=—B" on C,, (5.58)

that is, on all channel boundaries. The corresponding value of & on the eddy boundaries, given
by (3.62) with yr = y% s

& =LiR%Y°FB, on %%, (5.59)
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Since & takes the same value, —B°, on both €7, , and %, ,-boundaries, it follows immediately
that

By,=0, B°=—1Ry". (5.60)
We now substitute the results (5.57), (5.60) into (5.41) and use (5.405) and (5.55) to obtain
B = 3ROA[00) (Y — Vi) U+ ) +Hi(AY)}+B° on D, (5.61)

It follows from (3.495), after making use of (5.55) again, that
= ROA/00) A —¥)"— Wi —¥) f—¥)}+B° on D, (5.624)

In the closed eddies, on the other hand, near the the bbundaries %% ., we have from (2.94),
(3.264), (3.56b) and (5.60) that

B=+R%(y% ,—y)+B on 9%, (5.62b)
In terms of primitive variables the results (5.624, b) are

e Rn( X B) (=)= (=) (e 9))/ 4%} on Dy, (5.63a)
\F2Re (@, x By, (95— ) on D%

bl

(5.635)
(cf. the thermal problem results (5.32)), where, by (5.60),
B = ERn*(uy x By),y°. (5.64)

To calculate the mean electromotive force we first require the channel value of &.
Substitution of (5.55), (5.61) into (3.584) yields

¢ =3R@4/00), (Y —Yi) (b —Yria) — B (5.65)

To calculate &% defined by (3.67) we may proceed as in the case of the thermal problem in §5.2
and set ¢, . = 0. By this device E defined by (3.65) reduces to

nEl = JV & dy, (5.66a)
yL
where each channel contribution determined from (5.65) is
ﬁ " ¢ dy = — LREATIG), (AY)*— B (Ay). (5.666)
Vi

Except for the additional term, —B°(Ay), this is the same as the result (5.344). Following the
arguments which lead to (5.35) we obtain from (5.66) the result

(ET — B = —{HR(04]00)™ (Ay)* + B°} (Ay), (5.67a)

in which it is readily shown from the definitions that

B = —1RA(3A]00)™ [°]%. (5.67)
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Hence it follows from (3.68) with i =1 and 2 in (5.674) that

- 1
i L 1
= ——Re3(T6) (M2+N2)(1—3AL2)BL(—N,M). (5.680)

As in the thermal problem, the result (5.68) gives the dominant contribution to Ey;, whatever
the orientation of By, except for the special case in which it is aligned to @&, when it is small
anyway. So, for the general case, (5.68) yields the result

_ 1 e
KE, = LKRn? (1 _W) Wiy X (g X Byy) (5.69)

for the mean electromotive force which, in turn, gives us the asymptotic result (4.64) above for
the a-matrix, a.

Finally we remark briefly about the large L limit. In that case Ay tends to zero and so ¥,
and ¥, tend to the value ¥ on D,. This means that B defined by (5.624) is given asymptotically
by

B=B on D, as L- o0, (5.70)
while the mean electromotive force (5.68a) becomes
KE, =u, x(0,0,KB%) as L->oo0. (5.71)

The latter result is not that surprising as the mean flow linked with #; is constrained to follow
the channel regions, where the vertical field, KB, is uniform.

6. BOUNDARY LAYERS AND ERROR ESTIMATES
6.1. Boundary-layer widths

The estimates of mainstream channel solutions, upon which the results of § 5 depend requires
the ratio of the channel boundary layer width, R(A{),,, to the channel width, R*(A{), to be
small;

n= (ML) /(AL) < 1, (6.1)

where A{ is defined by (4.554). On the basis of this inequality an order of magnitude estimate
was obtained in §3.3, which led to the inequality (5.1). In this section we make quantitive
estimates of A{,, (see (6.3) below) to determine the conditions under which our asymptotic
results should reasonably approximate the numerical results of §4.

Consider, for example, the streamline C, over the periodicity interval OO, illustrated in
figure 2. The boundary layer solution on one side of it, either in the channel D, above qr in
the channel D_, below, can be constructed of modes with o-periodicity, 2n /I, where £ is either
0 or —1 respectively. The corresponding solutions of the heat conduction equation

06/d0 = 920 /0¢ (6.2a)
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governing a scalar 6, which underlies our boundary layer problems, are composed of modes
proportional to

0, = exp [2inng/Ty— (1—i) (nm/T L] (n=1,2,...). (6.2b)

The lowest mode n =1 is the least damped in the {-direction and provides the dominant
contribution to the solution at large |{|. We quantify its width by the ¢-distance

Alo = (Iym)t (6.3)

between two successive zeros of the real or imaginary part of 6, at fixed o. The boundary layer
width, (A).q, on the interior of the closed eddies may be defined in a similar way. There the
circulation integral I"is +8 (see (2.33)) and so the formula (6.3) yields

AL, = (8m). (6.4)
With the result (2.48) and (6.3) it gives
Al = (LA, /7)* (Aley)- (6.5)
It follows from (4.56) that the ratio # in (6.1) is
Mo = (84, /7) L3 (M?+ N2)i g2, (6.6)

The two interior boundary layers of a channel D, adjacent to its bounding streamlines C, and
Cy+1 decay exponentially and will not interact when well separated. In practice this condition
is met when u, + ;. is less than about unity. At fixed ¢, this condition is always met by flows
with rational tangents for sufficiently large R. We will call such solutions resonances. At fixed
f, on the other hand, the condition is only met by resonances with sufficiently small values of
M and N. That subset of resonant solutions will be referred to as strong resonances.

The values of A§, A{,, and A, for the results illustrated in figures 9-12 are listed in table 1.
Strong resonances occur for the O-flows (M, N) = (0,1), (1, 2) and the E-flow (M, N) = (1,1)
shown in a, b and d of the above figures, all of which have A{ = 24. Agreement of the analytic
with the numerical results is reasonably good for the case of perpendicular mean fields shown
in figures 10 and 12, but the discrepancies are larger for the case of parallel mean fields shown
in figures 9 and 11. Consider, for example, the case (M, N) = (0,1). The channel value of
about 0.12 shown in figure 9a is approximately 109, smaller than the asymptotic value 0.13
listed in table 2. Here a comparison with the corresponding analytic result (4.30) of paper 2
for cat’s-eye flows, which includes the boundary layer corrections is interesting. That result
shows that, in the notation of paper 2, the boundary layer correction is 4I'87*, where the
channel width is 2, the channel boundary layer width is approximately 3.5 (paper 2, equation
(4.515)) and I'is approximately 0.25 (paper 2, equation (A 74)). Hence for the paper 2 cat’s-
eye problem, we have

tes = (Aler)/(AG) = (T/4) B, (6.7)

(cf. (6.6) above). It follows that the discrepancy in & for those results is approximately
(47" =) 3pcs. For our problem, namely (M, N) = (0,1), AL = 24, AL, =5 (see table 1),
we have u approximately equal to 0.2, for which the paper 2 result 3 also gives a discrepancy
of about 109,. This is a very reassuring check of the validity of our results. Further direct
comparisons of the numerical and analytic results are provided by the numerical and
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asymptotic value of 4, listed in table 2. For the case (M, N) = (0, 1) the discrepancy between
the two values is again about 10 %, as it is for the other O-flows (M, N) = (1,2) and (1, 6); even
though the latter case is not a strong resonance. In the E-flow case (M, N) = (1,1), the
discrepancy is less, about 59%,.

For our three strong resonant cases (M, N) = (0,1), (1,2) and (1,1) of non-interacting
boundary layers, the distances A{,, and A{,, measure the distances between the successive
zeros of the boundary layer corrections. They are not always clearly identifiable on figures 9-12
but, when they are, they evidently agree.

So far we have stressed channel and eddy periodicity in order to understand the
characteristics of our boundary layer solutions. The other fundamental point of view, which we
introduced in §3.3, is that boundary layers are triggered at the X-type stagnation points and
evolve downstream either on the eddy or channel boundary (see figure 7). In order to interpret
this downstream evolution from figures 9-12 it is necessary to appreciate the nature of the
division of boundary layer solutions portrayed in the figures upon arrival at the end of the side
J*. Data is divided at the stagnation point O**! with coordinate § = A{’. The subsequent
mapping of data for positive (negative) £—A{ to the start of the next (previous) side
T (T 1) is accomplished by (A 3) and illustrated symbolically in figure 8. Since £ increases
to the left on figures 9-12, the pictured terminal data to the left (right) of £ = A{’ provides the
initial data to the left (right) of £ = O for the results shown in the next (previous) picture, taken
in cyclic (anticyclic) order. By this device it is a simple matter to follow in sequence the
development along any streamline. For the O-flows (M,N) = (0,1) and (1,2) single
streamline sequences 1-8 and 1-16 are indicated in figures 3 and 4 respectively, while for the
E-flow (M, N) = (1,1) a pair of streamline sequences 1-6 and 0’-5" are indicated in figure 5.
The location of these points for the solutions at the end of the sides 7 * is indicated on figures
9a, b and d. A single streamline sequence 1-32 is also indicated for the O-flow (M, N) = (1, 6)
on figure 9¢. Note, in particular, that the interior € ,-boundary layer is easily identified by
the left hand vertical broken lines in figures 9 and 11. The interior of the &5 ,-eddy lies to the
left of these lines. The downstream development follows the structure at the stagnation point
0° 0!, 0% 0O® taken in cyclic order (see (A 4a)). The exterior %, ,-boundary layers are
identified by the right hand broken lines with the corresponding &, ,-eddy interiors on their
right. Now the downstream development follows the stagnation points O O?, O, O° taken in
anticyclic order (see (A 44) and also figure 6). In case of the channels, identified by the regions
between pairs of vertical broken lines in figures 9 and 114, 4 and 4, a sequence generally consists
both of cyclic and anticyclic movements (see (A 5)) and as a result a channel visits the same
stagnation point on a number of separate occasions.

The resonant O-flow (M, N) = (1, 6) solution on figures 9-12¢ was chosen with (A{) and
(Ag)., equal. If we look, for example, at the parallel field case, which illustrates 4 in figure 9c,
we see how the boundary layer triggered at the X-type stagnation point O° evolves through
the sequence 1-13 (the X-type stagnation point O'). Through diffusion it thickens and smears
out to leave oscillations whose period is two channel widths, compatible with our periodicity
arguments. Of course, boundary-layer thickening is also apparent in the strong resonant cases
as a streamline boundary sequence is followed.
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6.2. The eddy-diffusivity and o-effect

The results of paper 2 lead us to believe that all mainstream solutions have power series
expansions in inverse powers of #, when the boundary layers on either side of channels are non
interacting. So in particular, for strong resonances, we postulate that the computed quantities
D™™ and ™™ defined by (4.43) and (4.66) have the expansions

DM = DO+ (AL Di+ ..., (6.84)
amm = g9+ (AL T+ ..., (6.8b)

in which the leading coefficients
Dy =¢PR'D,, &%=e’Ra, (6.94, b)

take the values (4.42b), (4.645) respectively. Of course, in the limit A§— o0, the diffusion and
a-matrices take on the limiting forms (4.42a) and (4.644) respectively. On the basis of this
hypothesis, we interpolate the numerically computed values of D™™ and &™™ listed in tables
4 and 5 to obtain better numerical estimates of D} and &J. The value of DY is given by the
formula,

By = 200™™ ), a0 = 10" ]yesa + LA ], (6.10)

while a similar expression gives the value of &j.

Of course, the order (A{) 2 error in (6.10) is for fixed M and N. The separation of the channel
boundary layers depends on the ratio (# = (A,,)/(Af)). So for our solutions obtained at the
two values of |#y], namely 30 and 60, the channel width A{ decreases with M and N.
Consequently the condition, g small, is only met by small values of M and N. In the case of
the diffusion coefficient D°, its irrational tangent limit is zero (see (4.424)). Itis clear from table
4 that there is good agreement with the numerical value of DY obtained from (6.10) with the
asymptotic value for the strong resonances (M, N) = (0,1) and (1,1), and reasonable
agreement for the resonances (M, N) = (1,2) and (1, 3) for which g is close to unity for the case
|#5| = 30. The larger values of M, N listed do not meet the non-interacting boundary-layer
condition and we do not expect the asymptotic theory, upon which (6.10) depends, to apply.
Nevertheless there is a clear tendency for the remaining values of DY to approach the irrational
tangent limit zero. A more comprehensive coverage of the values of [D~“”'““]|,,HI=60 is illustrated
in figure 13 over the range 0 < M/N < 1. The strong resonances M/N = 0,1 at either end of
the range are clearly visible, as are the resonances M/N = 1, 1. The asymptotic values of DY
listed in table 4 are indicated by the stars. The corresponding results for [&™™], _g are
illustrated in figure 14, with the irrational limit (4.64¢) given by the upper smooth curve.

The general trend, highlighted by the numerical results illustrated in figures 13 and 14, is

for the computed values of D™ and "™

to approach their corresponding irrational tangent
limits. As this happens the resonances (or rational tangents), on becoming strong, poke
through, adding a spike to the curve. The corresponding half-width 4, is determined by that
misalignment of the streamlines which lie within the channel boundary layer width.
Specifically suppose we consider a strong resonance (A{) (M, N) and consider neighbouring
mean flows #;; of the same magnitude, then the mismatch of the streamlines of #;; with the
resonant case is of order

[(92/1y) — (M/N)| 1] (6.11)
51 Vol. 331. A
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Ficure 13. The numerical values of D™™ for the case || = 60 plotted against the tangent M/ N over the range
0 < M/ N < 1. The asymptotic values given in table 4 are marked individually. Those for E-flows are identified
by ¥ and those for O-flows are identified by 4 . The irrational tangent limit is the axis € *R™D, = 0.

28

22

Snum
a

1.6

1.0 | | | |
0 04 0.8

Ficure 14. The numerical values of ™™ for the case || = 60 plotted against the tangent M/ N,
as in figure 13. The irrational tangent limit is the smooth upper curve.

at the end of one side 7 of the primary square I1. Along the length of that side the circulation
integral is 2 and so the relevant channel boundary layer width is obtained by setting I', = 2
in (6.3). It gives the rough estimate

Ay =1(n,/n,)— (M/N)| = @r)}/|ng| = 2/m)} (6.12)
For |gy| = 60, used in figures 13 and 14, this gives
4, ~ 0.025, (6.13)

which appears to be roughly in agreement with the widths of the spikes shown.

Even for the relatively moderate value of || used in figures 13 and 14 much fine structure
has emerged, which we have not completely resolved. It should be noted, however, that
because of the finite magnetic diffusivity the curves are smooth. The apparent roughness stems
from the fact that we have joined the computed points by straight line segments. As |#]
increases more and more spikes poke through and existing spikes sharpen according to the
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criterion (6.12). In the limit |gy| — oo, the spikes are dense on the line 0 < M/N < 1 and the
resulting curve is nowhere differentiable.
It is perhaps worth commenting on the asymptotic behaviour, at large g, for which strong

resonances occur when
2

L=0(h (B> 1), (6.14)
(see (5.1)). Since the corresponding number of strong resonances is of order L? (= /J’%) and
the spike widths is of order 7', (see (6.12)) the spikes more than fill the unit interval
0 < M/N < 1. This means that the curves portrayed in figures 13 and 14 become everywhere
spiky for large # with only the strongest resonances being distinguishable.

7. CONCLUDING REMARKS

In this paper we have presented a comprehensive investigation of the nature of scalar
diffusion and magnetic induction in a particular spatially periodic steady flow with mean
motion. The main objective of the work has been to describe a class of steady flows with
complicated streamline topology, which lie between simpler examples such as the cat’s-eye flow
of paper 2, and the three-dimensional ABC-flows mentioned in the introduction. Although our
analysis has not produced explicit fast dynamos within this family of motions, the methods may
be useful in tackling the more complicated but also more promising question of fast dynamo
action in steady flows with chaotic streamlines.

There are some features of chaotic streamline geometry which are mirrored in our almost-
periodic geometry here appropriate to the irrational limit. In both cases steady flow patterns
generally have boundary-layer structure which is dense in some finite region. While there is
undoubtedly a different topology (for example, that of a Cantor set) that arises in chaotic flows,
the basic response of the magnetic field at large R is similar in the two problems. As the
discussion of §6 explains, magnetic field structure on finer and finer length scales emerges in
the limit R— o0 in the irrational case. This structure tends to produce fluctuations in the a-
effect as a function of R, which tend to decrease in amplitude for large R. In this way the
occurrence of fast dynamo action is characterized by a well-defined limit as R — 00, although
numerically large values of R may be needed. Indeed Soward (1989) showed that in the two-
dimensional Roberts case discussed by Galloway & Frisch (1986), the asymptotic behaviour
is not reached until values of R of order 10*. If this estimate applies to the three-dimensional
ABC flows, an asymptotic régime, where fast dynamo action can be assessed, may require R to
be 10 or 100 times larger than the maximum value in Galloway & Frisch (1986).

The above remarks relate to the magnitude of the a-matrix when the vertical z-dependence
of the mean magnetic field proportional to €'* is included. To estimate the range of validity
of the present theory and the magnitude of modifications which ensue at finite ¢, we must
investigate the role of vertical advection. In paper 2 we noted that for the cat’s-eye problem
the asymptotic validity with increasing ¢ is first broken by the vertical advection of magnetic
field in the channels. For our mean flow problem the effect of vertical advection is more potent
in the eddies themselves, where it gives rise to a new term of order Ky’ 04/0z on the right of
(3.254). This yields the estimate
%(yg—;— —-RE%~iKR(¢——¢)qA. (7.1)

51-2
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Our earlier result (3.24) thus continues to hold when KRg is small. When KRygq is large, on the
other hand, a boundary layer is formed and the mainstream solution of (7.1), which ignores
the first term on the left, gives 4 of order E/Kq(yy —) in the eddy interior. This means that
the size of b on the eddy boundaries is of order R2E/K¢e?, smaller by a factor (KgRe?)™" than
that given by (3.264). This in turn reduces the vertical B-field in the eddy by an order of
magnitude. Thus the vertical channel field, which is controlled by the boundary value (3.57),
is likewise reduced causing a corresponding reduction of the a-effect.

We must distinguish carefully between the cases of rational and irrational tangents. In the
irrational limit the horizontal field 4 in the channel tends to zero. A similar expulsion of vertical
field occurs, leaving the uniform component B* (cf. (5.64)). This is fixed by the matching across
the eddy boundary. So, when KRq is large and the eddy B-field is small, the electromotive force
is reduced in concert. It is difficult to estimate the exact size of the a-effect in this limit but we
may reasonably suppose that it is smaller than (4.64¢) by the vertical eddy B-field reduction
factor of order (KgRe?)™':

ay" = 0(e/q) (¢ (KR)™). (7.2)

For rationals, on the other hand, the expulsion of flux from the eddies does not effect the order
of magnitude of the channel fields and the estimate o, = O(Ke®*R) given by (4.644) remains
valid. The limitations on the validity of this estimate now emerges from the channel solutions.
So, in place of (7.1), we consider the corresponding modification of the channel equation
(5.7a), namely

d2A/dy — R(T4/d0), ~ iKeRqA. (7.3)

This forces 4 to decay on the boundary layer width (KeRq)‘%. It is comparable to the channel
width when

qg= O(Ke*R)™. (7.4)

Consequently, our order Ke’R estimate for o, remains valid for ¢ < (Ke*R)™. For shorter
vertical length scales ¢~ the magnitude of a, is reduced by an order of magnitude.

We comment now on the interesting question of fast dynamo action. The a-matrices, which
we have calculated for large R (cf. (4.64)), are singular and do not by themselves lead to a
dynamo at all. To test whether dynamo action is possible it is necessary to calculate the induced
mean electromotive force when the mean magnetic field is parallel to the mean flow as in paper
2. Instead, we explore the possibility of a dynamo when the mean flow (1.2¢) varies its
orientation slowly with z. In other words, we consider the case

0<l<1 (7.5)

instead of the limit /-0, which leads to (1.9). To estimate the growth rate of magnetic field
we may assume that the a-effect is constant independent of the orientation of the mean flow.
The problem then coincides with a model considered by Soward & Childress (1986). Their
results showed that the fastest growing mode had a wavenumber (g in (1.34)) equal to [ in the
vertical z-direction and that the growth rate p is

b~ oyl (7.6)
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It is likely that this is maximized with increasing / when KR/ is of order unity, i.e. precisely at
the point where our estimate o, ~ Ke?R is no longer strictly valid. If we nevertheless suppose
that it is, we obtain the fast dynamo estimate p ~ a,! ~ €*. Alternatively we might increase
[ yet further and adopt (7.2) valid for /> (KR)™', appropriate because during the rotation of
the mean velocity vector #I; with z it is largely the irrational tangents that are sampled. In that
region of parameter space we obtain p ~ €. The discrepancy between the order ¢ and €
estimates for p reflects our use of asymptotic formulas outside their formal range of validity, and
we emphasize only the disappearance of R in both cases.

Moreover, fast dynamo action is achieved here by adjusting the vertical length scale, ™!, of
the mean motion so that it increases linearly with R. The long vertical wavelength is needed
for technical reasons, to allow our theory to be applied locally in z. If the wavelength does not
grow in this way as R increases, vertical structure, which produces chaotic webs and disrupts
the asymptotic channel structure, will influence the magnetic field generation. If we anticipate
that the chaos will not inhibit, and indeed will more likely enhance, dynamo activity, then the
limit of large R at fixed €, [ should exhibit fast dynamo action, although the present theory can
not be applied to prove this.

The corresponding issue for scalar diffusion is the existence of a ‘turbulent’ effective
diffusivity which is positive and independent of R as R— co. The present result (4.425) is
interesting because of its behaviour in the irrational limit. The divergence of

(me)® R L.
~ . R X
a8 AL+ yop o) 77

with increasing R is typical of steady flows with channel structure in a preferred direction.
However, the coefficient in (7.7) vanishes in the irrational limit. This behaviour thus allows a
finite effective diffusivity in the irrational case, although without further analysis we cannot
assume that the next term in the expansion (7.7) is order unity and non trivial. A general
abstract discussion of the effective diffusivity generated by a large class of steady periodic flows
without mean motion has been given by Avellaneda & Majda (1989). Closely related is the
work on diffusion in porus media by Koch et al. (1989). Our irrational limit would indeed
correspond to a finite effective diffusivity according to the analysis of the latter paper, since
there the streamlines are dense mod 27®. In that case boundary layers should not contribute
intermediate terms of order R, and therefore it may be feasible to calculate the leading term
of the expansion in D in the irrational case using asymptotic channel theory. In any event
analysis of the present example in the more abstract setting of Avellaneda & Majda (1989) may
prove very fruitful.

The limitations of the present theory are highlighted by the above remarks. Nevertheless the
flows we have studied do confirm, in so far as diffusion and a-effect are concerned, their
anticipated status as providing a bridge between simple periodic and chaotic three-dimensional
flows. The irrational limit suggests but does not establish fast dynamo action for flows of fixed
structure in the irrational case, and it would be interesting to confirm this and relate growth
rate to the structure of the flow, e.g. the rates of stretching of line elements, for the irrational
limit.

For the analysis of steady motion at least, the next step in this line of investigation is to
introduce small regions of lagrangian chaos, for example in the chaotic webs of the flow (1.2)
with 8 ~ ¢ € 1. Unfortunately, both three-dimensionality and full chaotic behaviour are then
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introduced simultaneously, this being a consequence of treating chaos only in the context of
steady flow. Whether or not the present asymptotic methods will then prove useful remains to
be seen. One hopeful point is that there is clearly an analogous boundary layer structure when
8 ~ € € 1; and also there remains the simplification to long vertical length scale, / < 1 in (1.2¢).
Our results suggest that such calculations would lead to explicit examples of fast dynamo action
and order one ‘turbulent diffusion’ in steady flows, in the limit of infinite R.
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1986. The work was continued at New York University under Grants NSF-DMS-831 2229
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Study Program in Geophysical Fluid Dynamics. We thank the Director of the 1987 Program,
W. V. R. Malkus for his encouragement and support. In Autumn 1989, S. Childress was
supported at Cambridge University by a Royal Society Guest Research Fellowship, and by a
Visiting Fellow Commonorship at Trinity College. He thanks H. K. Moffatt for his hospitality
and encouragement during this visit.

APPENDIX A. MAINSTREAM SOLUTIONS USING SHIFT MAPS

The basic formula (4.42) for the diffusion-matrix and (4.64) for the a-matrix depends on
knowledge of the number of sides of each square IT,, ,, which are transversed by individual
streamlines before they repeat themselves. This transit defines a shift (Ax, Ay) in the xy plane
and the streamline between two end points Fy(xy,y,) and Py(xo+Ax,yo+Ay) we called a
periodicity section (see (2.14), (2.16), (2.31a)). So, for example, in calculating the A-field
(5.314) for perpendicular fields the coefficient (04/00), is determined by dividing the jump
[A]’,Zg over a peridicity section, which is the same for all streamlines, by the circulation integral
I',, which takes constant values 2§, in each channel D, (see (2.32)). The magnitude of the
diffusion coefficient D, in (4.424) is proportional to the mean value (04/d0)™ of (04/0c), (see
(6.35¢)). That in turn is proportional to the mean value of 1/S,, namely

@M %('S'l”rsl) - T (A1)

(see (2.48)—(2.51)).

In this Appendix, we provide an alternative derivation of the result (A 1) of §2, by use of
shift maps. Whilst this approach is basically only a restatement of the results of § 2 together with
their application in §5, it perhaps suggests how the present analysis might be formalized for
applications to yet more complicated topology.

We consider a scalar function f which satisfies the periodicity condition,
f(x+m,y+n) =f(x,y), and has the special property that is constant upon the streamlines of the
flow, f = f(¢); for example, the mainstream solutions () and #(¢) of §5. In the case of slow
mean flows (|&,| < 1, see §2.3), it is convenient to treat the flow near the corners O, at which
¥ =y’ (see (2.35), (2.36)), of the primary square /T by introducing the coordinate

p=y—y'=Rig (A 2a)
as in (4.8) and writing

E(¢) =/(¥). (A 2b)
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The symmetries of the flow yield the connections defined by (4.15), which are

(B +ApY, $>0,
F¢) = {E+l<¢+A¢f“>, $<0,

and were used extensively in §4. Here the end values at ¢ = 2 on sides 7 **! determine the start
value at o = 0 on the side 7.
The relations (A 3) provide transition sequences connecting F, to . Two of them,

(A3)

F>FE~FE—~F ¢ <y (A 4a)
=F 1> Ty > L3 =Ly, + )
S “{1«;»@%»&, <y, (A 45)

distinguished by their initial y-range on 7 °, are associated with closed eddy streamlines. The
former (Y} < ¢) lie on @5 ,, the latter (¥ < ¥?) lie on 2;, ,, neighbouring the primary square
I1. In the channel regions we may identify three sequences

R>F~F~F y*<y<y? (), (A 5a)
fW) = F~{F~F§, pr<y <yt (), (A 50)
F~F, Yo <y <y (1), (A 50)

again dis’tinguished by their initial ¢-range. As a result of map F,— F, ,, the transitions (A 3)
indicate that there is a y-shift —Ay’. Thus (A 5) defines a mapping

—y'=y,  (D):yl—y® =z, (A 6a)
m(y) =y +{—y”, (ID): y*—y' = na, (A 6)
+ye, (ITT) : Y —y° = mz, (A 6¢)

(see (2.38), (2.39), (2.42) and figures 6 and 8) of the initial ¢-range ¥° <y <% (=0 in
(2.40)) onto itself, where y° = n(z,+,), ¥’ = n(#,—u,) as defined by (2.74). The mappings
(A 6) from I, IT and III involve 4, 2 and 2 transitions respectively (see (A 5)).

The map (y) is not, however, into or onto for each of the ranges I, IT and III separately.
Some transition sequences from II return to II after a shift —y*. On the other hand, the
transition sequence from IIT is always into I U II. It is, therefore, convenient to contract the
sequence of double maps I U IT—-III -1 U II so forming a single mapping m(y) of I U II into
and onto itself. In this way the transition sequence I - III— I also corresponds to a shift — y*.
Other possible transition sequences depend on the sign of ¥*. When ¢* > 0, they are II >
IIT - I with shift —y#+y° and I - III - II with shift —y*. When ¢ < 0, they are IT - I with
shift —y# and I -1 U II with shift —y*—y°. Since the y-range of I U II is ¢, all possibilities
are accounted for by the single statement

m(y) + @, = (Y +na,—y*) (mod y°), —ni, <y <ma, (I U II). (A 7a)

In the special case ¥* =0, map (A 7a) reduces to the identity m(y) = ¢. Henceforth, we
restrict attention to the case @, > @, > 0 (see (2.6)), for which ¥* < 0.

Now each transition F,— F,, corresponds to the passage of one side of the primary eddy. The
aim is to determine, for each streamline in the neighbourhood of the origin, the number of
transitions (or sides traversed) before the shifted value of ¥ returns to its initial value. In order
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to accomplish this calculation for ¥ < 0, we need to count carefully the number of transitions
involved in the mapping (A 74). The transition sequences with upward shift —¢* are of two
types: type (A) with initial range —n#, < ¢ < 3*, II->1 U II with two transitions, and type
(B) with initial range ¥’ < ¢ < ma,+¢*, I > 1111 with six transitions. The only transition
with downward shift —y#—y° is type (C) with initial range nu, +y* < ¢ < na,, [>1 U 11
with four transitions, occurring only when ¥ < 0.

To form a link with the channel structure, we set n(%,,%,) = (Ay) (M, N) as in (2.10) and

write ¥ = x(Ayr). Accordingly, the map (A 7a) becomes
mx)+N=[x+N+(N—M)](modL) (—N<x<M), (AT7b)

where L (= M+ N) is the sum of the relatively prime integers M and N. The unit interval
k < x < k+ 1 corresponds to the channel D, (see (2.30)). Since m(x) constitutes a linear shift map
on a one-dimensional torus (a circle), we may also regard it as a shift map m(x) = x+ (N—M)
on the infinite line, where x in (A 75) is now the equivalence class {x} of all points x+¢L
generated by all integers ¢. Consequently, when after p repetitions of the shift (A75) a
particular point x returns to its start position

mP(x) =x (—N<x<M), (A 8)

the linearity of m implies that all points on the interval — N < x < M return simultaneously.
An immediate objective is to determine the smallest number p for which (A 8) is satisfied
together with the number of transitions S(x) involved as a function of the start position x. It
is not defined for integer values of x but elsewhere, we will show that

Sx)=8, (k<x<k+1) (A 9a)
takes the constant values
S, = (4/7)4,L (A 9b)

on each of the channels D,. This result (see (2.48)), which was determined by an alternative
method in §2, gives the number of sides S involved in a channel periodicity section F, to P, (see
(2.31)).

Consider first the simpler case of O-flows, L odd, 7 = 1. We first note that N—M and M+ N
are relatively prime. Indeed if M+ N is odd and N—M = ra, M+ N = rb for relatively prime
integers a, b and integer r (> 1), then we have 2N = r(a+b) and 2M = r(b—a). Now r must
be odd, in which case 2 is a factor of a+ b and b—a, so that M and N have a common factor
r (> 1), which is a contradiction. Accordingly, a point x€ D, only returns to its start position
after p = L (= M+ N) applications of the map (A 75): This is the smallest positive number for
which p(N—M)+q(M+ N) = 0. Since there are L—1 non-repetitive maps, each of the L
channels D, (— N < k< M—1) is visited once and only once. The visits involve M upward
shifts of type (A), M upward shifts of type (B) and N— M downward shifts of type (C). This
gives the total transition count

S, =2M+6M+4(N—M) = 4L. (A 10)

Consider the case of E-flows, L even, 7 = 2. Now N—M and N+ M are no longer relatively
prime but have the common factor 2. This means that our argument that a point x eventually
enters every channel D, under repeated application of m no longer applies. Instead, 3(N— M)
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and 3(M + N) are relatively prime. As a result it is convenient to split the domain U¥=% D, of
our mapping (A 75) into two distinct subdomains

D,= U D, D_= U D, (A11)

keven kodd

each of which are mapped into and onto themselves by m. Since both D, and D_ consist of
3(M+ N) distinct intervals D,, the arguments of the previous paragraph imply that each point
x returns to its initial position after p = 1L applications of the map (A 75) having entered every
distinct unit interval D, of one of the two subdomains once. To count the number of transitions
we need the number of intervals D, in each range I and II for the two subdomains D, and D_

separately. Use of the fact, that the location of the boundary ¥ (= ¥*) = ¢ between ranges
I and II is characterized by N— M = —y*/(Ay) even, yields the number of intervals

(N+1)in1,

(N—1)in1, (A 12)

[ Sl

1
2
1
2

(M—1)inIT (K even),
(M+1)inII (£ odd). }
The number of transition sequences of type (A), (B) and (C) are easily determined by noting
their initial y-ranges in conjunction with (A 12). The number of type (A) from II is 3(M F 1),
of type (B) from I is (M £ 1) and of type (C) from I is }( N— M), where the upper and lower
signs correspond to the subdomains D, and D_ respectively. These results give the total
transition count

Se=[M—(—1)F1+3[M+ (—1)*1+2(N—M) = 2[L+(—1)"]. (A 13)
The results (A 10) and (A 13) agree with (2.48) and are used to derive the main result (A 1).

AprPPENDIX B. GLOSSARY

We summarize the key notation either giving or referencing their definitions.

Dimensionless numbers

R = magnetic Reynolds number, R > 1;

p= ek e < 1, (3.16);

M, N are relatively prime integers, L = M+ N, (1.105);
Ay = RH(AL) = me/(M?+ N2)i, (2.106), (4.5b).

Geometry
II% , = [mm, (m+1) 7] X [nx, (e 1) w], £ =(—1)", [ = m+n: (1.4), (2.4b);
T (m+in):mn<x< (m+1)n,y=nm, .
7 1 (3.30);
T, (mn+3):x=ma,an <y < (n+1)m,

T = IT ,: primary square with edges ' (4.9) connecting the corners O to O***, (2.35), also
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Flow
u= { g+ } velocit
Oy /2y, —oyr/ox, Ky))” &
¥ = Y+ ¢’ streamfunction, (2.1);
Y’ = sinxsiny,
1}=yi¢‘z—xa‘y=n (AY) ( N): (2.10¢),

Vm.w = Y (mm,nm) = (AY) ( nM mN) (2.3);

Y= LAY),y" = (M—N) (Ay): (2.7d), (2.275);

uy; =1 ' (Ay) (M, N): mean velocity, (2.10);

1y = Rinidy: stretched boundary layer mean velocity, (4.2);
E-flows: L even
O-flows: L odd,
¢-notation means R? times corresponding y variable.

’} L= M+ N, below (2.16);

Eddy structure

B (Y): closed eddy streamline ¥ = constant, above (3.22);
2 () : region bounded by € (¢), above (3.22);

y() =j€ uy;+-dx: circulation, (3.244);
€

2 = %g dX': area enclosed by € (y), (3.22) and below;

Y iy =y, at X-type stagnation point on eddy boundary, (2.9);
€ . =€ ,): eddy boundary, above (2.8);

Dy =D WL ,): eddy interior < IT% ,, above (2.8);
€% =€(WL ,+¥,.,): particular eddy streamline where +,, are positive

(2.24);
+Ir=yz,) =18, (YL ,) =n* above (3.26);
R¥(AL,,): eddy boundary layer width (6.4); u,: (6.6).

Primary eddy structure (i = 0,1,2,3)

Ul = K(AY): ¢ = ' at X-type stagnation point near O' (integer k%), (2.36);
C': streamline through O, (4.7b);
Awl — ¢i+1 zﬁ\l 2 43
Y =9y’ on boundary %50 of primary eddy 2y ,, (2.38),
i {1,0 = ¢’ on boundary %,, , of eddies adjacent to 9y ,, (2.39),;
specifically on side 7¢;
b =YL YL, (2.374);

£=Riy—y)
fp :  boundary layer coordinates of point P on side 7, (4.8), (4.9);
o= | ug-dx
Oi

£-notation means corresponding § variable less & (= R%W)

constants,
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Channel structure

C(y) : open channel streamline ¢ = constant, below (5.1);
V. = k(AY) ¥ = ¢, at some X-type stagnation point where
FEYe T Yk = (04 M—(m+3) N+ (—1)'3L, (2.27), (2.30);
C, = C(r,) : channel boundary, (2.30);
D,: Y, <Y <., channel interior, (2.30);
P, P,: end points of channel periodicity section defined by shift (Ax, Ay), (2.31) and below;
S, : number of sides in periodicity section, (2.32) and above;

Pa

I, = J Uy -dx: circulation; o = JuH-dx;
PU

4,,A: parameters, (2.49), (2.51);

R#(AL,,): channel boundary layer width; g: (6.1).

Thermal and magnetic variables and constants

gy = V4: thermal gradient;
B = (04/9y, —0A4/0x, KB) : magnetic field;
A = xg,+yg, =yB,—xB,: (3.1), (3.9);

moa = A(mu,nm): (3.45);

1, AB: parallel (4.33) and perpendicular (4.35) fields;

Hy gy = — (ly X By),: (3.2¢), (3.10);

w=UgA—ldz A=—D-gy: mean heat flux, (3.5), (3.6);

D diffusion-matrix; D,: (4.42); D™™: (4.43);

KE,; = (ux B)y = a- By: mean electromotive force, (3.13), (3.14);
o: a-matrix; oy, al": (4.64); &™™: (4.66);

b= R34/ : (3.40)
)} {
)

I

RS IEY

Principal quantities of interest which are

# = B+Ryb: (3.59 functions of the o,y coordinates.

& = Ruyb—RB: (3.58

Eddy constants

,ns+1: value of 4 at centre of square IT% ,, (3.274) and below;

+ .
m,n>

m+}

0 A~ 141_m+%_n+%iA0, (3.27): mainstream eddy values on
bib~ b, (3.26);

By: B% , = £ B,: mean value of B on eddy 2 ,, (3.56);
B®: mainstream X-type stagnation point values of B, (4.57a), (5.64);
Fe mit ast (3.31), (3.34);

E'°,E£>: (3.60), (3.63).

SN
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Primary eddy constants

i-superscripts refers to side J .
o lA_ﬁr = 4, L centre value on primary square IT = IT§ ,, (3.37)
AL =4, .1, centre value on squares IT,, , adjacent to 17, (3.38);
Abt = — (AL —A"): (3.43);
= x,9, (3.35), (3.37), (3.38);

9"205,9"1,9°100, F1:(3.42), (3.45);

s*

& LELEL L E L (3.66), (3.67);

Green’s function solutions

i-superscripts refer to side 7 °.

G,(0,£): Green’s functions, j = 1,2, 3, (4.24);

(”—'(g)'j= 1 (4.29¢), 7 =2 (4.53b);
—(E+36) b (447 0a);

bl b’, b’reg (4.26), (4.295);

Q, I, I : (4.230), (4.28), (4.30);

e (4 51);

9720 ) : (4.37);

(5’1 (om : (4.59).

Mainstream channel solutions

by, M, AM: (5 8a), (5.12), (5.15);

B, = RB— Rﬁtﬁ,ﬁéb. (5.400);

S S b B (5.41), (5.45), (5.48).

The superscript M is used to denote mean value over two neighbouring channels D,_, and D,
(say).
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